Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
341
342
343
344
345
346
347
348
349
350
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/349.jpg
"
pagenum
="
321
"/>
<
p
type
="
main
">
<
s
>Computum ineundo prodcunt pondus globi in vacuo (76 1/12)
<
emph
type
="
italics
"/>
gran,
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
note329
"/>
exceſſus hujus ponderis ſupra pondus in aqua (71 17/48)
<
emph
type
="
italics
"/>
gran,
<
emph.end
type
="
italics
"/>
diameter
<
lb
/>
globi 0,81296
<
emph
type
="
italics
"/>
dig,
<
emph.end
type
="
italics
"/>
octo tertiæ partes hujus diametri 2,16789
<
emph
type
="
italics
"/>
dig,
<
emph.end
type
="
italics
"/>
<
lb
/>
ſpatium 2 F 2,3217
<
emph
type
="
italics
"/>
dig,
<
emph.end
type
="
italics
"/>
ſpatium quod globus pondere (5 1/16)
<
emph
type
="
italics
"/>
gran,
<
emph.end
type
="
italics
"/>
<
lb
/>
tempore 1″, abſque reſiſtentia cadendo deſcribat 12,808
<
emph
type
="
italics
"/>
dig,
<
emph.end
type
="
italics
"/>
&
<
lb
/>
tempus G 0′,301056. Globus igitur, velocitate maxima quacum
<
lb
/>
poteſt in aqua vi ponderis (5 1/16)
<
emph
type
="
italics
"/>
gran.
<
emph.end
type
="
italics
"/>
deſcendere, tempore 0′,301056
<
lb
/>
deſcribet ſpatium 2,3217
<
emph
type
="
italics
"/>
dig.
<
emph.end
type
="
italics
"/>
& tempore 15″ ſpatium 115,678
<
emph
type
="
italics
"/>
dig.
<
emph.end
type
="
italics
"/>
<
lb
/>
Subducatur ſpatium 1,3862944 F ſeu 1,609
<
emph
type
="
italics
"/>
dig.
<
emph.end
type
="
italics
"/>
& manebit ſpatium
<
lb
/>
114,069
<
emph
type
="
italics
"/>
dig.
<
emph.end
type
="
italics
"/>
quod proinde globus eodem tempore in vaſe latiſli
<
lb
/>
mo cadendo deſcribere debet. </
s
>
<
s
>Propter anguſtiam vaſis noſtri de
<
lb
/>
trahi debet ſpatium 0,895
<
emph
type
="
italics
"/>
dig.
<
emph.end
type
="
italics
"/>
circiter. </
s
>
<
s
>Et ſic manebit ſpatium
<
lb
/>
113,174
<
emph
type
="
italics
"/>
dig.
<
emph.end
type
="
italics
"/>
quod globus cadendo in hoc vaſe, tempore 15″ de
<
lb
/>
ſcribere debuit per Theoriam quamproxime. </
s
>
<
s
>Deſcripſit vero digi
<
lb
/>
tos 112 per Experimentum. </
s
>
<
s
>Differentia eſt inſenſibilis. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note329
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Exper.
<
emph.end
type
="
italics
"/>
3. Globi tres æquales, quorum pondera ſeorſim erant
<
lb
/>
121
<
emph
type
="
italics
"/>
gran.
<
emph.end
type
="
italics
"/>
in aere & 1
<
emph
type
="
italics
"/>
gran.
<
emph.end
type
="
italics
"/>
in aqua, ſucceſſive demittebantur; &
<
lb
/>
cadebant in aqua temporibus 46″, 47″, & 50″, deſcribentes alti
<
lb
/>
tudinem digitorum 112. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Per Theoriam hi globi cadere debuerunt tempore 40″ circiter. </
s
>
<
s
>
<
lb
/>
Quod tardius ceciderunt, vel bullulis nonnullis globo adhærenti
<
lb
/>
bus, vel rarefactioni ceræ ad calorem vel tempeſtatis vel manus
<
lb
/>
globum demittentis, vel erroribus inſenſibilibus in ponderandis
<
lb
/>
globis in aqua, vel denique minori proportioni reſiſtentiæ quæ a
<
lb
/>
vi inertiæ in tardis motibus oritur ad reſiſtentiam quæ oritur ab
<
lb
/>
aliis cauſis, tribuendum eſſe puto. </
s
>
<
s
>Ideoque pondus globi in aqua
<
lb
/>
debet eſſe plurium granorum ut experimentum certum & fide dig
<
lb
/>
num reddatur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Exper.
<
emph.end
type
="
italics
"/>
4. Experimenta hactenus deſcripta cæpi ut inveſtigarem
<
lb
/>
reſiſtentias fluidorum antequam Theoria, in Propoſitionibus pro
<
lb
/>
xime præcedentibus expoſita, mihi innoteſceret. </
s
>
<
s
>Poſtea, ut Theo
<
lb
/>
riam inventam examinarem, paravi vas ligneum latitudine interna
<
lb
/>
digitorum 8 2/3, profunditate pedum quindecim cum triente. </
s
>
<
s
>De
<
lb
/>
inde ex cera & plumbo incluſo globos quatuor formavi, ſingulos
<
lb
/>
pondere 139 1/4 granorum in aere & 7 1/8 granorum in aqua. </
s
>
<
s
>Et hos
<
lb
/>
demiſi ut tempora cadendi in aqua per pendulum, ad ſemi-minuta
<
lb
/>
ſecunda oſcillans, menſurarem. </
s
>
<
s
>Globi, ubi ponderabantur & po
<
lb
/>
ſtea cadebant, frigidi erant & aliquamdiu frigidi manſerant; quia
<
lb
/>
calor ceram rarefacit, & per rarefactionem diminuit pondus globi
<
lb
/>
in aqua, & cera rarefacta non ſtatim ad denſitatem priſtinam per </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>