Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
351
352
353
354
355
356
357
358
359
360
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/355.jpg
"
pagenum
="
327
"/>
<
p
type
="
main
">
<
s
>In Scholio quod Sectioni ſextæ ſubjunctum eſt, oſtendimus per </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
arrow.to.target
n
="
note335
"/>
experimenta pendulorum quod globorum æqualium & æquivelo
<
lb
/>
cium in Aere, Aqua, & Argento vivo motorum reſiſtentiæ ſunt ut
<
lb
/>
fluidorum denſitates. </
s
>
<
s
>Idem hic oſtendimus magis accurate per
<
lb
/>
experimenta corporum cadentium in Aere & Aqua. </
s
>
<
s
>Nam pendula
<
lb
/>
ſingulis oſcillationibus motum cient in fluido motui penduli re
<
lb
/>
deuntis ſemper contrarium, & reſiſtentia ab hoc motu oriunda, ut
<
lb
/>
& reſiſtentia fili quo pendulum ſuſpendebatur, totam Penduli re
<
lb
/>
ſiſtentiam majorem reddiderunt quam reſiſtentia quæ per experi
<
lb
/>
menta corporum cadentium prodiit. </
s
>
<
s
>Etenim per experimenta
<
lb
/>
pendulorum in Scholio illo expoſita, globus ejuſdem denſitatis
<
lb
/>
cum Aqua, deſcribendo longitudinem ſemidiametri ſuæ in Aere,
<
lb
/>
amittere deberet motus ſui partem (1/3342). At per Theoriam in hac
<
lb
/>
ſeptima Sectione expoſitam & experimentis cadentium confirma
<
lb
/>
tam, globus idem deſcribendo longitudinem eandem, amittere de
<
lb
/>
beret motus ſui partem tantum (1/4586), poſito quod denſitas Aquæ ſit
<
lb
/>
ad denſitatem Aeris ut 860 ad 1. Reſiſtentiæ igitur per experi
<
lb
/>
menta pendulorum majores prodiere (ob cauſas jam deſcriptas)
<
lb
/>
quam per experimenta globorum cadentium, idQ.E.I. ratione 4 ad
<
lb
/>
3 circiter. </
s
>
<
s
>Attamen cum pendulorum in Aere, Aqua, & Argento
<
lb
/>
vivo oſcillantium reſiſtentiæ a cauſis ſimilibus ſimiliter augeantur,
<
lb
/>
proportio reſiſtentiarum in his Mediis, tam per experimenta pen
<
lb
/>
dulorum, quam per experimenta corporum cadentium, ſatis recte
<
lb
/>
exhibebitur. </
s
>
<
s
>Et inde concludi poteſt quod corporum in fluidis
<
lb
/>
quibuſcunque fluidiſſimis motorum reſiſtentiæ, cæteris paribus,
<
lb
/>
ſunt ut denſitates fluidorum. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note335
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>His ita ſtabilitis, dicere jam licet quamnam motus ſui partem
<
lb
/>
globus quilibet, in fluido quocunque projectus, dato tempore amit
<
lb
/>
tet quamproxime. </
s
>
<
s
>Sit D diameter globi, & V velocitas ejus ſub
<
lb
/>
initio motus, & T tempus quo globus velocitate V in vacuo de
<
lb
/>
ſcribet ſpatium quod ſit ad ſpatium 2/3D ut denſitas globi ad denſi
<
lb
/>
tatem fluidi: & globus in fluido illo projectus, tempore quovis
<
lb
/>
alio
<
emph
type
="
italics
"/>
t,
<
emph.end
type
="
italics
"/>
amittet velocitatis ſuæ partem (
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
V/T+
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
), manente parte (TV/T+
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
),
<
lb
/>
& deſcribet ſpatium quod ſit ad ſpatium uniformi velocitate V eo
<
lb
/>
dem tempore deſcriptum in vacuo, ut logarithmus numeri (T+
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
/T)
<
lb
/>
multiplicatus per numerum 2,302585093 eſt ad numerum
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
/T, per </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>