Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
351
352
353
354
355
356
357
358
359
360
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/359.jpg
"
pagenum
="
331
"/>
<
arrow.to.target
n
="
note339
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note338
"/>
DE MOTU
<
lb
/>
CORPORUM.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note339
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XLII. THEOREMA XXXIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Motus omnis per Fluidum propagatus divergit a recto tramite
<
lb
/>
in ſpatia immota.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
1. Propagetur motus a puncto
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
per foramen
<
emph
type
="
italics
"/>
BC,
<
emph.end
type
="
italics
"/>
per
<
lb
/>
gatque (ſi fieri poteſt) in ſpatio conico
<
emph
type
="
italics
"/>
BCQP,
<
emph.end
type
="
italics
"/>
ſecundum li
<
lb
/>
neas rectas divergentes a puncto
<
emph
type
="
italics
"/>
C.
<
emph.end
type
="
italics
"/>
Et ponamus primo quod
<
lb
/>
motus iſte ſit undarum in ſuperficie ſtagnantis aquæ. </
s
>
<
s
>Sintque
<
lb
/>
<
emph
type
="
italics
"/>
de, fg, hi, kl,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>undarum ſingularum partes altiſſimæ, valli
<
lb
/>
bus totidem intermediis ab invicem diſtinctæ. </
s
>
<
s
>Igitur quoniam
<
lb
/>
aqua in undarum jugis altior eſt quam in Fluidi partibus immo
<
lb
/>
tis
<
emph
type
="
italics
"/>
LK, NO,
<
emph.end
type
="
italics
"/>
defluet eadem de jugorum terminis
<
emph
type
="
italics
"/>
e, g, i, l,
<
emph.end
type
="
italics
"/>
&c.
<
lb
/>
<
emph
type
="
italics
"/>
d, f, h, k,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>hinc inde, verſus
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NO
<
emph.end
type
="
italics
"/>
: & quoniam in un
<
lb
/>
darum vallibus depreſſior eſt quam in Fluidi partibus immotis
<
lb
/>
<
emph
type
="
italics
"/>
KL, NO
<
emph.end
type
="
italics
"/>
; defluet eadem de partibus illis immotis in undarum
<
lb
/>
valles. </
s
>
<
s
>Defluxu priore undarum juga, poſteriore valles hinc
<
lb
/>
inde dilatantur & propagantur verſus
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NO.
<
emph.end
type
="
italics
"/>
Et quo
<
lb
/>
niam motus undarum ab
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
verſus
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
fit per continuum de
<
lb
/>
fluxum jugorum in valles proximos, adeoque celerior non eſt
<
lb
/>
quam pro celeritate deſcenſus; & deſcenſus aquæ, hinc inde, ver
<
lb
/>
ſus
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NO
<
emph.end
type
="
italics
"/>
eadem velocitate peragi debet; propagabitur
<
lb
/>
dilatatio undarum, hinc inde, verſus
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NO,
<
emph.end
type
="
italics
"/>
eadem velo
<
lb
/>
citate qua undæ ipſæ ab
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
verſus
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
recta progrediuntur. </
s
>
<
s
>
<
lb
/>
Proindeque ſpatium totum hinc inde, verſus
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NO,
<
emph.end
type
="
italics
"/>
ab
<
lb
/>
undis dilatatis
<
emph
type
="
italics
"/>
rfgr, shis, tklt, vmnv,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>occupabitur.
<
lb
/>
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
Hæc ita ſe habere quilibet in aqua ſtagnante expe
<
lb
/>
riri poteſt. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
2. Ponamus jam quod
<
emph
type
="
italics
"/>
de, fg, hi, kl, mn
<
emph.end
type
="
italics
"/>
deſignent pul
<
lb
/>
ſus a puncto
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
per Medium Elaſticum, ſucceſſive propagatos. </
s
>
<
s
>
<
lb
/>
Pulſus propagari concipe per ſucceſſivas condenſationes & rare
<
lb
/>
factiones Medii, ſic ut pulſus cujuſque pars denſiſſima ſphæricam
<
lb
/>
occupet ſuperficiem circa centrum
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
deſcriptam, & inter pulſus
<
lb
/>
ſucceſſivos æqualia intercedant intervalla. </
s
>
<
s
>Deſignent autem lineæ
<
lb
/>
<
emph
type
="
italics
"/>
de, fg, hi, kl,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>denſiſſimas pulſuum partes, per foramen
<
emph
type
="
italics
"/>
BC
<
emph.end
type
="
italics
"/>
<
lb
/>
propagatas. </
s
>
<
s
>Et quoniam Medium ibi denſius eſt quam in ſpatiis
<
lb
/>
hinc inde verſus
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NO,
<
emph.end
type
="
italics
"/>
dilatabit ſeſe tam verſus ſpatia illa
<
lb
/>
<
emph
type
="
italics
"/>
KL, NO
<
emph.end
type
="
italics
"/>
utrinque ſita, quam verſus pulſuum rariora intervalla; </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>