Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
351
(331)
352
(332)
353
(333)
354
(334)
355
(335)
356
(336)
357
(337)
358
(338)
359
(339)
360
(340)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(339)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div816
"
type
="
section
"
level
="
1
"
n
="
483
">
<
p
>
<
s
xml:id
="
echoid-s8363
"
xml:space
="
preserve
">
<
pb
o
="
339
"
file
="
0359
"
n
="
359
"
rhead
="
LIBER IV.
"/>
G, ad parallelepipedum ſub, BG, & </
s
>
<
s
xml:id
="
echoid-s8364
"
xml:space
="
preserve
">quadrato, HF; </
s
>
<
s
xml:id
="
echoid-s8365
"
xml:space
="
preserve
">item omnia
<
lb
/>
quadrata, AF, ad omnia quadrata, AG, ſunt vt quadratum, FH,
<
lb
/>
ad quadratum, HG, .</
s
>
<
s
xml:id
="
echoid-s8366
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s8367
"
xml:space
="
preserve
">ſumpta, BG, communi altitudine, vt pa-
<
lb
/>
rallelepipedum ſub, BG, & </
s
>
<
s
xml:id
="
echoid-s8368
"
xml:space
="
preserve
">quadrato, FH, ad parallelepipedum
<
lb
/>
ſub, BG, & </
s
>
<
s
xml:id
="
echoid-s8369
"
xml:space
="
preserve
">quadrato, HG: </
s
>
<
s
xml:id
="
echoid-s8370
"
xml:space
="
preserve
">_Tandem omnia quadrata,_ AG, dupla
<
lb
/>
ſunt omnium quadratorum ſemiparabolæ, BHG, ergo, ex æquali,
<
lb
/>
omnia quadrata figuræ, CBHF, demptis omnibus quadratis trili-
<
lb
/>
nei, BCE, ad omnia quadrata ſemiparabolæ, BHG, erunt vt pa-
<
lb
/>
rallelepipedum ſub, BG, & </
s
>
<
s
xml:id
="
echoid-s8371
"
xml:space
="
preserve
">his ſpatijs .</
s
>
<
s
xml:id
="
echoid-s8372
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s8373
"
xml:space
="
preserve
">quadrato, FG, {1/2}. </
s
>
<
s
xml:id
="
echoid-s8374
"
xml:space
="
preserve
">quadra-
<
lb
/>
ti, GH, & </
s
>
<
s
xml:id
="
echoid-s8375
"
xml:space
="
preserve
">rectangulo ſub, FG, & </
s
>
<
s
xml:id
="
echoid-s8376
"
xml:space
="
preserve
">ſexquitertia, GH, ab eodem
<
lb
/>
dempto {1/6}. </
s
>
<
s
xml:id
="
echoid-s8377
"
xml:space
="
preserve
">parallelepipedi ſub, CE, & </
s
>
<
s
xml:id
="
echoid-s8378
"
xml:space
="
preserve
">quadrato, FG, ad dimidium
<
lb
/>
parallelepipedi ſub, BG, & </
s
>
<
s
xml:id
="
echoid-s8379
"
xml:space
="
preserve
">quadrato, GH, quod erat demonſtran-
<
lb
/>
dum.</
s
>
<
s
xml:id
="
echoid-s8380
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div817
"
type
="
section
"
level
="
1
"
n
="
484
">
<
head
xml:id
="
echoid-head504
"
xml:space
="
preserve
">THEOREMA XLIV. PROP. XLVI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s8381
"
xml:space
="
preserve
">IN parabola ducta axi, vel diametro æquidiſtanter rect@
<
lb
/>
linea, ſi deinde fiat parallelogrammum ſub eadem du-
<
lb
/>
cta, & </
s
>
<
s
xml:id
="
echoid-s8382
"
xml:space
="
preserve
">ſub baſi, angulum habens æqualem angulo i
<
gap
/>
<
lb
/>
tionis eiuſdem ductæ ad baſim, regula ſumpta baſi. </
s
>
<
s
xml:id
="
echoid-s8383
"
xml:space
="
preserve
">Re
<
gap
/>
<
lb
/>
gula ſub parallelogram
<
gap
/>
, in quæ dictum parallelogram-
<
lb
/>
mum diuiditur à ducta linea, ſunt dupla rectangulorum
<
lb
/>
ſub portionibus fruſti parabolæ, dicto parallelogrammo in-
<
lb
/>
cluſæ, per eandem ductam conſtituris.</
s
>
<
s
xml:id
="
echoid-s8384
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8385
"
xml:space
="
preserve
">Sit parabola, AZG, in baſi, ZG, circa axim, vel diametrum,
<
lb
/>
<
figure
xlink:label
="
fig-0359-01
"
xlink:href
="
fig-0359-01a
"
number
="
243
">
<
image
file
="
0359-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0359-01
"/>
</
figure
>
AQ, cui parallela ducatur vt-
<
lb
/>
cumque recta, DP, fiat autem
<
lb
/>
parallelogrammum ſub, ZQ,
<
lb
/>
DP, angulum habens æqualẽ
<
lb
/>
angulo inclinationis, DP, ad
<
lb
/>
ZG, .</
s
>
<
s
xml:id
="
echoid-s8386
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s8387
"
xml:space
="
preserve
">angulo, qui ſit, DPG,
<
lb
/>
vtcunque exduobus, DPG,
<
lb
/>
DPZ, ſit autem hoc paralle.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8388
"
xml:space
="
preserve
">logrammum, HG, regula ve. </
s
>
<
s
xml:id
="
echoid-s8389
"
xml:space
="
preserve
">
<
lb
/>
ro, HG. </
s
>
<
s
xml:id
="
echoid-s8390
"
xml:space
="
preserve
">Dico ergo, rectãgula
<
lb
/>
ſub, HP, PE, dupla eſſe rectãgulorũ ſub portionibus, BDPZ, DGP. </
s
>
<
s
xml:id
="
echoid-s8391
"
xml:space
="
preserve
">
<
lb
/>
Sumpto ergo vtcunq; </
s
>
<
s
xml:id
="
echoid-s8392
"
xml:space
="
preserve
">in, DP, puncto, T, per, T, ducatur, RF, ipſi,
<
lb
/>
ZG, æquidiſtans ſecanſq; </
s
>
<
s
xml:id
="
echoid-s8393
"
xml:space
="
preserve
">curuam parabolæ in, SI, &</
s
>
<
s
xml:id
="
echoid-s8394
"
xml:space
="
preserve
">, AQ, in, O. </
s
>
<
s
xml:id
="
echoid-s8395
"
xml:space
="
preserve
">
<
lb
/>
Rectangulum ergo, ZPQ, ad rectangulum, STI, habet </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>