Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
351
(331)
352
(332)
353
(333)
354
(334)
355
(335)
356
(336)
357
(337)
358
(338)
359
(339)
360
(340)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(340)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div817
"
type
="
section
"
level
="
1
"
n
="
484
">
<
p
>
<
s
xml:id
="
echoid-s8395
"
xml:space
="
preserve
">
<
pb
o
="
340
"
file
="
0360
"
n
="
360
"
rhead
="
GEOMETRIÆ
"/>
compoſitam ex ea, quam habet rectangulum, ZPG, ad rectangu-
<
lb
/>
lum, ZQG, ideſt ex ea, quam habet, DP, ad, AQ, & </
s
>
<
s
xml:id
="
echoid-s8396
"
xml:space
="
preserve
">ex ra-
<
lb
/>
tione rectanguli, ZQG, ad rectangulum, SOI, vel quadra-
<
lb
/>
ti, QG, ad quadratum, OI, ideſt ex ea, quam habet, QA, ad,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0360-01
"
xlink:href
="
note-0360-01a
"
xml:space
="
preserve
">3. huius.</
note
>
AO, & </
s
>
<
s
xml:id
="
echoid-s8397
"
xml:space
="
preserve
">ex ratione rectanguli, SOI, ad rectangulum, STI, ideſt
<
lb
/>
ex ratione, AO, ad, DT, ergo rectangulum, ZPG, vel, RTF, ad
<
lb
/>
rectangulum, STI, erit vt, PD, ad DT, abſciſſam. </
s
>
<
s
xml:id
="
echoid-s8398
"
xml:space
="
preserve
">Et quoniam,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0360-02
"
xlink:href
="
note-0360-02a
"
xml:space
="
preserve
">3. huius.</
note
>
HG, eſt parallelogrammum in eadem baſi, & </
s
>
<
s
xml:id
="
echoid-s8399
"
xml:space
="
preserve
">altitudine cum fruſto,
<
lb
/>
BZGD, & </
s
>
<
s
xml:id
="
echoid-s8400
"
xml:space
="
preserve
">per punctum, T, vtcunq. </
s
>
<
s
xml:id
="
echoid-s8401
"
xml:space
="
preserve
">ſumptum ducta, BP, regulæ
<
lb
/>
parallela, quę eſt baſis, ZG, inuentũ eſt rectangulũ BTP, ad rectan-
<
lb
/>
gulũ, STI, eſſe vt, PD, ad DT; </
s
>
<
s
xml:id
="
echoid-s8402
"
xml:space
="
preserve
">quatuor ergo horum magnitudinum
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0360-03
"
xlink:href
="
note-0360-03a
"
xml:space
="
preserve
">Yux. Cor.
<
lb
/>
3. 26.l. 2.</
note
>
ordinibus conſtructis, iuxta has quatuor magnitudines, quę inuentę
<
lb
/>
ſunt eſſe proportionales, & </
s
>
<
s
xml:id
="
echoid-s8403
"
xml:space
="
preserve
">hoc modo ſolito, reperimus rectangula
<
lb
/>
ſub, HP, PE, ad rectangula ſub portionibus, BZPD, DGP, eſſe vt
<
lb
/>
maximę abſciſſarum, DP, ad omnes abſciſſas, DP, recti, vel eiuſdẽ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0360-04
"
xlink:href
="
note-0360-04a
"
xml:space
="
preserve
">Corol. 2.
<
lb
/>
<
gap
/>
2.</
note
>
obliqui tranſitus .</
s
>
<
s
xml:id
="
echoid-s8404
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s8405
"
xml:space
="
preserve
">eſſe eorum dupla, quod oſtendere opus erat.</
s
>
<
s
xml:id
="
echoid-s8406
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div819
"
type
="
section
"
level
="
1
"
n
="
485
">
<
head
xml:id
="
echoid-head505
"
xml:space
="
preserve
">THEOREMA XLV. PROP. XLVII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s8407
"
xml:space
="
preserve
">IN anteced. </
s
>
<
s
xml:id
="
echoid-s8408
"
xml:space
="
preserve
">figura oſtendemus, regula eadem, ZG, omnia
<
lb
/>
quadrata, DG, ad omnia quadrata, DPG, eſſe vt, ZP,
<
lb
/>
ad compoſitam ex {1/3}. </
s
>
<
s
xml:id
="
echoid-s8409
"
xml:space
="
preserve
">ZP, & </
s
>
<
s
xml:id
="
echoid-s8410
"
xml:space
="
preserve
">{1/2}. </
s
>
<
s
xml:id
="
echoid-s8411
"
xml:space
="
preserve
">PCOmnia verò quadrata,
<
lb
/>
DC, ad omnia quadrata trilinei, DGE, eſſe vt, ZP, ad ſui
<
lb
/>
reliquum, demptis ab eadem {2/3}. </
s
>
<
s
xml:id
="
echoid-s8412
"
xml:space
="
preserve
">ZP, cum {1/6}, PG.</
s
>
<
s
xml:id
="
echoid-s8413
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8414
"
xml:space
="
preserve
">Rectangula enim ſub, HP, PE, adrectangula ſub, HP, & </
s
>
<
s
xml:id
="
echoid-s8415
"
xml:space
="
preserve
">por-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0360-05
"
xlink:href
="
note-0360-05a
"
xml:space
="
preserve
">Coroll. 1.
<
lb
/>
26.I. 2.</
note
>
tione, DPG, ſunt vt, EP, ad portionem, DPG, .</
s
>
<
s
xml:id
="
echoid-s8416
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s8417
"
xml:space
="
preserve
">vt, ZP, ad
<
lb
/>
compoſitam ex {1/4}. </
s
>
<
s
xml:id
="
echoid-s8418
"
xml:space
="
preserve
">ZP, & </
s
>
<
s
xml:id
="
echoid-s8419
"
xml:space
="
preserve
">{1/6}. </
s
>
<
s
xml:id
="
echoid-s8420
"
xml:space
="
preserve
">PG; </
s
>
<
s
xml:id
="
echoid-s8421
"
xml:space
="
preserve
">eadem autem rectangula ſub, H
<
lb
/>
P, PE, ſunt dupla rectangulorum ſub portionibus, DBZP, DP
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0360-06
"
xlink:href
="
note-0360-06a
"
xml:space
="
preserve
">3. huius.</
note
>
G, .</
s
>
<
s
xml:id
="
echoid-s8422
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s8423
"
xml:space
="
preserve
">ſunt ad illa, vt, ZP, ad {1/2}. </
s
>
<
s
xml:id
="
echoid-s8424
"
xml:space
="
preserve
">ZP, ergo ad reſiduum rectangulo-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0360-07
"
xlink:href
="
note-0360-07a
"
xml:space
="
preserve
">Ex antec.</
note
>
<
figure
xlink:label
="
fig-0360-01
"
xlink:href
="
fig-0360-01a
"
number
="
244
">
<
image
file
="
0360-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0360-01
"/>
</
figure
>
rum ſub, HP, &</
s
>
<
s
xml:id
="
echoid-s8425
"
xml:space
="
preserve
">, DPG, dem-
<
lb
/>
ptis rectangulis ſub portioni-
<
lb
/>
bus, DBZP, DGP, ideſt
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0360-08
"
xlink:href
="
note-0360-08a
"
xml:space
="
preserve
">Jux. A. 23.
<
lb
/>
l. 2.</
note
>
ad rectangula ſub trilineo, D
<
lb
/>
P G, & </
s
>
<
s
xml:id
="
echoid-s8426
"
xml:space
="
preserve
">trilineo, BHZ, .</
s
>
<
s
xml:id
="
echoid-s8427
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s8428
"
xml:space
="
preserve
">tri-
<
lb
/>
lineo, DEG, erunt vt, ZP,
<
lb
/>
ad {1/6}. </
s
>
<
s
xml:id
="
echoid-s8429
"
xml:space
="
preserve
">PG, .</
s
>
<
s
xml:id
="
echoid-s8430
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s8431
"
xml:space
="
preserve
">ſumpta, PG, cõ-
<
lb
/>
muni altitudine, vt rectangu-
<
lb
/>
lum, ZPG, ad rectangulum
<
lb
/>
ſub, PG, & </
s
>
<
s
xml:id
="
echoid-s8432
"
xml:space
="
preserve
">{1/6}. </
s
>
<
s
xml:id
="
echoid-s8433
"
xml:space
="
preserve
">PG, .</
s
>
<
s
xml:id
="
echoid-s8434
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s8435
"
xml:space
="
preserve
">ad {1/6}.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8436
"
xml:space
="
preserve
">quadrati, PG, ſunt autem omnia quadrata, DG, ad rectangula </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>