Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
361
362
363
364
365
366
367
368
369
370
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/361.jpg
"
pagenum
="
333
"/>
muntur: recedent eædem verſus Medii partes omnes quieſcentes,
<
lb
/>
<
arrow.to.target
n
="
note341
"/>
tam laterales
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NO,
<
emph.end
type
="
italics
"/>
quam anteriores
<
emph
type
="
italics
"/>
PQ,
<
emph.end
type
="
italics
"/>
eoque pacto
<
lb
/>
motus omnis, quam primum per foramen
<
emph
type
="
italics
"/>
BC
<
emph.end
type
="
italics
"/>
tranſiit, dilatari in
<
lb
/>
cipiet & abinde, tanquam a principio & centro, in partes omnes
<
lb
/>
directe propagari.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note341
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XLIII. THEOREMA XXXIV.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corpus omne tremulum in Medio Elaſtico propagabit motum pul
<
lb
/>
ſuum undiQ.E.I. directum; in Medio vero non Elaſtico motum
<
lb
/>
circularem excitabit.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
1. Nam partes corporis tremuli vicibus alternis eundo &
<
lb
/>
redeundo, itu ſuo urgebunt & propellent partes Medii ſibi proxi
<
lb
/>
mas, & urgendo compriment eaſdem & condenſabunt; dein re
<
lb
/>
ditu ſuo ſinent partes compreſſas recedere & ſeſe expandere. </
s
>
<
s
>Igi
<
lb
/>
tur partes Medii corpori tremulo proximæ ibunt & redibunt per
<
lb
/>
vices, ad inſtar partium corporis illius tremuli: & qua ratione
<
lb
/>
partes corporis hujus agitabant haſce Medii partes, hæ ſimilibus
<
lb
/>
tremoribus agitatæ agitabunt partes ſibi proximas, eæque ſimiliter
<
lb
/>
agitatæ agitabunt ulteriores, & ſic deinceps in infinitum. </
s
>
<
s
>Et
<
lb
/>
quemadmodum Medii partes primæ eundo condenſantur & re
<
lb
/>
deundo relaxantur, ſic partes reliquæ quoties eunt condenſabun
<
lb
/>
tur, & quoties redeunt ſeſe expandent. </
s
>
<
s
>Et propterea non omnes
<
lb
/>
ibunt & ſimul redibunt (ſic enim determinatas ab invicem diſtan
<
lb
/>
tias ſervando, non rarefierent & condenſarentur per vices) ſed ac
<
lb
/>
cedendo ad invicem ubi condenſantur, & recedendo ubi rarefiunt,
<
lb
/>
aliquæ earum ibunt dum aliæ redeunt; idque vicibus alternis in
<
lb
/>
infinitum. </
s
>
<
s
>Partes autem euntes & eundo condenſatæ, ob motum
<
lb
/>
ſuum progreſſivum quo feriunt obſtacula, ſunt pulſus; & propte
<
lb
/>
rea pulſus ſucceſſivi a corpore omni tremulo in directum propaga
<
lb
/>
buntur; idque æqualibus circiter ab invicem diſtantiis, ob æqua
<
lb
/>
lia temporis intervalla, quibus corpus tremoribus ſuis ſingulis
<
lb
/>
ſingulos pulſus excitat. </
s
>
<
s
>Et quanquam corporis tremuli par
<
lb
/>
tes eant & redeant ſecundum plagam aliquam certam & determi
<
lb
/>
natam, tamen pulſus inde per Medium propagati ſeſe dilatabunt
<
lb
/>
ad latera, per Propoſitionem præcedentem; & a corpore illo tre
<
lb
/>
mulo tanquam centro communi, ſecundum ſuperficies propemo
<
lb
/>
dum ſphæricas & concentricas, undique propagabuntur. </
s
>
<
s
>Cujus </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>