Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
361
(341)
362
(342)
363
(343)
364
(344)
365
(345)
366
(346)
367
(347)
368
(348)
369
(349)
370
(350)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(343)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div824
"
type
="
section
"
level
="
1
"
n
="
487
">
<
p
>
<
s
xml:id
="
echoid-s8562
"
xml:space
="
preserve
">
<
pb
o
="
343
"
file
="
0363
"
n
="
363
"
rhead
="
LIBER IV.
"/>
rallelepipedum ſub, AQ, & </
s
>
<
s
xml:id
="
echoid-s8563
"
xml:space
="
preserve
">his ſpatijs .</
s
>
<
s
xml:id
="
echoid-s8564
"
xml:space
="
preserve
">f. </
s
>
<
s
xml:id
="
echoid-s8565
"
xml:space
="
preserve
">quadrato, PQ {1/2}.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8566
"
xml:space
="
preserve
">quadrati, QZ, & </
s
>
<
s
xml:id
="
echoid-s8567
"
xml:space
="
preserve
">rectangulo ſub ſexquitertia, ZQ, & </
s
>
<
s
xml:id
="
echoid-s8568
"
xml:space
="
preserve
">ſub, Q
<
lb
/>
P, ab eodem dempta {1/6}. </
s
>
<
s
xml:id
="
echoid-s8569
"
xml:space
="
preserve
">para llelepipedi ſub, CD, & </
s
>
<
s
xml:id
="
echoid-s8570
"
xml:space
="
preserve
">quadra-
<
lb
/>
to, QP,</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8571
"
xml:space
="
preserve
">Completo parallelogrammo, KP, omnia igitur quadrata trili-
<
lb
/>
<
figure
xlink:label
="
fig-0363-01
"
xlink:href
="
fig-0363-01a
"
number
="
245
">
<
image
file
="
0363-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0363-01
"/>
</
figure
>
nei, DPG, ad omnia qua-
<
lb
/>
drata figurę, CAZP, demp tis
<
lb
/>
omnibus quadratis trilinei, A
<
lb
/>
CD, habent rationem com-
<
lb
/>
poſitam ex ea, quam habent
<
lb
/>
omnia quadrata, DPG, ad
<
lb
/>
omnia quadrata, DG, .</
s
>
<
s
xml:id
="
echoid-s8572
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s8573
"
xml:space
="
preserve
">ex
<
lb
/>
ratione compoſitæ ex {1/3}. </
s
>
<
s
xml:id
="
echoid-s8574
"
xml:space
="
preserve
">ZP,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s8575
"
xml:space
="
preserve
">{1/6}. </
s
>
<
s
xml:id
="
echoid-s8576
"
xml:space
="
preserve
">PG, ad, ZP, & </
s
>
<
s
xml:id
="
echoid-s8577
"
xml:space
="
preserve
">ex ratio-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0363-01
"
xlink:href
="
note-0363-01a
"
xml:space
="
preserve
">47. huius.</
note
>
ne omnium quadratorum, D
<
lb
/>
G, ad omnia quadrata, KP, .</
s
>
<
s
xml:id
="
echoid-s8578
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s8579
"
xml:space
="
preserve
">ex ratione parallelepipedi ſub, D
<
lb
/>
P, & </
s
>
<
s
xml:id
="
echoid-s8580
"
xml:space
="
preserve
">quadrato, PG, ad parallel epipedum ſub, AQ, & </
s
>
<
s
xml:id
="
echoid-s8581
"
xml:space
="
preserve
">quadrato, Z
<
lb
/>
P, & </
s
>
<
s
xml:id
="
echoid-s8582
"
xml:space
="
preserve
">tandem ex ratione omnium quadratorum, KP, ad omnia qua-
<
lb
/>
drata figuræ, CAZP, demptis omnibus quadratis trilinei, ACD,
<
lb
/>
.</
s
>
<
s
xml:id
="
echoid-s8583
"
xml:space
="
preserve
">f. </
s
>
<
s
xml:id
="
echoid-s8584
"
xml:space
="
preserve
">ex ratione parallelepipedi ſub, AQ, & </
s
>
<
s
xml:id
="
echoid-s8585
"
xml:space
="
preserve
">quadrato, ZP, ad paralle-
<
lb
/>
pipedum ſub, AQ, & </
s
>
<
s
xml:id
="
echoid-s8586
"
xml:space
="
preserve
">his ſpatijs .</
s
>
<
s
xml:id
="
echoid-s8587
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s8588
"
xml:space
="
preserve
">quadrato, PQ, {1/2}. </
s
>
<
s
xml:id
="
echoid-s8589
"
xml:space
="
preserve
">quadrati,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0363-02
"
xlink:href
="
note-0363-02a
"
xml:space
="
preserve
">34. huius.</
note
>
QZ, & </
s
>
<
s
xml:id
="
echoid-s8590
"
xml:space
="
preserve
">rectangulo ſub, PQ, & </
s
>
<
s
xml:id
="
echoid-s8591
"
xml:space
="
preserve
">ſexquitertia, QZ, ab eodem dem-
<
lb
/>
pta {1/6}. </
s
>
<
s
xml:id
="
echoid-s8592
"
xml:space
="
preserve
">parallelepipedi ſub, CD, & </
s
>
<
s
xml:id
="
echoid-s8593
"
xml:space
="
preserve
">quadrato, PQ; </
s
>
<
s
xml:id
="
echoid-s8594
"
xml:space
="
preserve
">duæ autem ra-
<
lb
/>
tiones parallelepipedi ſub, DP, & </
s
>
<
s
xml:id
="
echoid-s8595
"
xml:space
="
preserve
">quadrato PG, ad parallelepipe-
<
lb
/>
dum ſub, AQ, & </
s
>
<
s
xml:id
="
echoid-s8596
"
xml:space
="
preserve
">quadrato, ZP, & </
s
>
<
s
xml:id
="
echoid-s8597
"
xml:space
="
preserve
">huius parallelepipedi ad paral-
<
lb
/>
lelepipedum ſub, AQ, & </
s
>
<
s
xml:id
="
echoid-s8598
"
xml:space
="
preserve
">ſpatijs iam dictis, ab eodem dempta {1/6}. </
s
>
<
s
xml:id
="
echoid-s8599
"
xml:space
="
preserve
">pa-
<
lb
/>
rallelepipedi ſub, CD, & </
s
>
<
s
xml:id
="
echoid-s8600
"
xml:space
="
preserve
">quadrato, PQ, componunt rationem pa-
<
lb
/>
rallelepipedi ſub, DP, & </
s
>
<
s
xml:id
="
echoid-s8601
"
xml:space
="
preserve
">quadrato, PG, ad parallelepipedum ſub,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0363-03
"
xlink:href
="
note-0363-03a
"
xml:space
="
preserve
">Defin. 12.
<
lb
/>
l. 1.</
note
>
AQ, & </
s
>
<
s
xml:id
="
echoid-s8602
"
xml:space
="
preserve
">dictis ſpatijs ab eodem dempta {1/6}. </
s
>
<
s
xml:id
="
echoid-s8603
"
xml:space
="
preserve
">parallelepipedi ſub, CD,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s8604
"
xml:space
="
preserve
">quadrato, PQ, ergo omnia quadrata trilinei, DGP, ad omnia,
<
lb
/>
quadrata figuræ, CAZP, demptis omnibus quadratis trilinei, AC
<
lb
/>
D, erunt in ratione compoſita ex ea, quam habet {1/3}. </
s
>
<
s
xml:id
="
echoid-s8605
"
xml:space
="
preserve
">ZP, cum {1/6}. </
s
>
<
s
xml:id
="
echoid-s8606
"
xml:space
="
preserve
">P
<
lb
/>
G, ad, ZP, & </
s
>
<
s
xml:id
="
echoid-s8607
"
xml:space
="
preserve
">ex ea, quam habet parallelepipedum ſub, DP, & </
s
>
<
s
xml:id
="
echoid-s8608
"
xml:space
="
preserve
">qua-
<
lb
/>
drato, PG, ad parallelepipedum ſub, AQ, & </
s
>
<
s
xml:id
="
echoid-s8609
"
xml:space
="
preserve
">his ſpatijs .</
s
>
<
s
xml:id
="
echoid-s8610
"
xml:space
="
preserve
">f. </
s
>
<
s
xml:id
="
echoid-s8611
"
xml:space
="
preserve
">quadra-
<
lb
/>
to, PQ, {1/2}. </
s
>
<
s
xml:id
="
echoid-s8612
"
xml:space
="
preserve
">quadrati, QZ, cum rectangulo ſub, PQ, & </
s
>
<
s
xml:id
="
echoid-s8613
"
xml:space
="
preserve
">ſexquitertia,
<
lb
/>
QZ, ab eodem parallelepipedo dempta {1/6}. </
s
>
<
s
xml:id
="
echoid-s8614
"
xml:space
="
preserve
">parallelepipedi ſub, CD,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s8615
"
xml:space
="
preserve
">quadrato, PQ, quod oſtendere opus erat.</
s
>
<
s
xml:id
="
echoid-s8616
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>