Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
361
(341)
362
(342)
363
(343)
364
(344)
365
(345)
366
(346)
367
(347)
368
(348)
369
(349)
370
(350)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(345)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div826
"
type
="
section
"
level
="
1
"
n
="
488
">
<
p
>
<
s
xml:id
="
echoid-s8669
"
xml:space
="
preserve
">
<
pb
o
="
345
"
file
="
0365
"
n
="
365
"
rhead
="
LIBER IV.
"/>
ea, quam habet rectangulum, ZPG, cum {1/2}. </
s
>
<
s
xml:id
="
echoid-s8670
"
xml:space
="
preserve
">quadrati, PG, ad re-
<
lb
/>
ctangulum, STI, cum {1/2}. </
s
>
<
s
xml:id
="
echoid-s8671
"
xml:space
="
preserve
">quadrati, TI, & </
s
>
<
s
xml:id
="
echoid-s8672
"
xml:space
="
preserve
">ex ea, quam habet qua-
<
lb
/>
dratum, PG, ad quadratum, TI, quod, &</
s
>
<
s
xml:id
="
echoid-s8673
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s8674
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div828
"
type
="
section
"
level
="
1
"
n
="
489
">
<
head
xml:id
="
echoid-head509
"
xml:space
="
preserve
">THEOREMA XLIX. PROPOS. LI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s8675
"
xml:space
="
preserve
">IN omnibus huius Libri 4. </
s
>
<
s
xml:id
="
echoid-s8676
"
xml:space
="
preserve
">Propoſitionibus, in quibus
<
lb
/>
duarum quarumcunque fi grarum notificata fuit ratio
<
lb
/>
omnium quadratorum, iuxta regulas in eiſdem aſſumptas,
<
lb
/>
nota etiam euadit ratio ſimilarium ſolidorum, quæ ex illis
<
lb
/>
gignuntur figuris, iuxta eaſdem regulas.</
s
>
<
s
xml:id
="
echoid-s8677
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8678
"
xml:space
="
preserve
">Quoniam enim oſtenſum eſt Lib. </
s
>
<
s
xml:id
="
echoid-s8679
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s8680
"
xml:space
="
preserve
">Prop. </
s
>
<
s
xml:id
="
echoid-s8681
"
xml:space
="
preserve
">33. </
s
>
<
s
xml:id
="
echoid-s8682
"
xml:space
="
preserve
">vt omnia quadra-
<
lb
/>
ta duarum figurarum inter ſe ſumpta cum datis regulis, ita effe ſo-
<
lb
/>
lida ſimilaria genita ex ijſdem figuris iuxta eaſdem regulas, ideò
<
lb
/>
cum in Propoſitionibus huius Libri inuenta eſt ratio omnium qua-
<
lb
/>
dratorum duarum figurarum cum quibuſdam regulis, colligemus
<
lb
/>
etiam nunc eandem eſſe rationem duorum ſimilarium ſolidorum,
<
lb
/>
quæ ex illis figuris iuxta eaſdem regulas, genita dicuntur. </
s
>
<
s
xml:id
="
echoid-s8683
"
xml:space
="
preserve
">Vtex. </
s
>
<
s
xml:id
="
echoid-s8684
"
xml:space
="
preserve
">g.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8685
"
xml:space
="
preserve
">in Prop. </
s
>
<
s
xml:id
="
echoid-s8686
"
xml:space
="
preserve
">21. </
s
>
<
s
xml:id
="
echoid-s8687
"
xml:space
="
preserve
">conſpecta denuò illius figura, cum oſtenſum eſt omnia
<
lb
/>
quadrata, AF, eſſe dupla omnium quadratorum parabolæ, VEF,
<
lb
/>
regula ſumpta, VF; </
s
>
<
s
xml:id
="
echoid-s8688
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s8689
"
xml:space
="
preserve
">item omnia quadrata parabolæ, VEF, eſ-
<
lb
/>
ſe ſexquialtera omnium quadratorum trianguli, VEF, conclude-
<
lb
/>
mus pariter ſolidum fimilare genitum ex, AF, ad ſibi ſimilare geni-
<
lb
/>
tum ex parabola, VEF, duplam habere rationem; </
s
>
<
s
xml:id
="
echoid-s8690
"
xml:space
="
preserve
">hoc verò ad ſo-
<
lb
/>
lidum ſibiſimilare genitum ex triangulo, VEF, habere rationem
<
lb
/>
ſexquialteram, genita autem dicta ſolida intellige iuxta dictam re-
<
lb
/>
gulam, VF; </
s
>
<
s
xml:id
="
echoid-s8691
"
xml:space
="
preserve
">pater ergo propoſitum.</
s
>
<
s
xml:id
="
echoid-s8692
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div829
"
type
="
section
"
level
="
1
"
n
="
490
">
<
head
xml:id
="
echoid-head510
"
xml:space
="
preserve
">SCHOLIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s8693
"
xml:space
="
preserve
">_Q_V oniam autem apertè colligitur ex Lib. </
s
>
<
s
xml:id
="
echoid-s8694
"
xml:space
="
preserve
">I. </
s
>
<
s
xml:id
="
echoid-s8695
"
xml:space
="
preserve
">Prop. </
s
>
<
s
xml:id
="
echoid-s8696
"
xml:space
="
preserve
">46. </
s
>
<
s
xml:id
="
echoid-s8697
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s8698
"
xml:space
="
preserve
">47 ſi onæ-
<
lb
/>
nes figuræ ſimiles parabolæ, quæ ſumantur regula eiuſdem baſi,
<
lb
/>
ſint circuli, diame tros in eadem parabola ſitos babentes, cui ſint ere-
<
lb
/>
cti, ſolidum ſimilare genitum ex dicta parabola eſſe conoides parabo-
<
lb
/>
licum, cuius baſis rectè ſecat axim; </
s
>
<
s
xml:id
="
echoid-s8699
"
xml:space
="
preserve
">ſi verò ſint ellipſes homologas
<
lb
/>
diametros in eadem parabola ſitos babentes eidem erectæ, quarum ſe-
<
lb
/>
cunda diametri ſint æquales diſtantia parallelarum, qua ducuntur ab
<
lb
/>
extremis primæ diametri æquidiſtanter axi, eſſe pariter conoides pa-
<
lb
/>
rabolicum, cuius baſis tunc obliquè axim ſecat. </
s
>
<
s
xml:id
="
echoid-s8700
"
xml:space
="
preserve
">Ideò ex bis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>