Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
361
362
363
364
365
366
367
368
369
370
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/367.jpg
"
pagenum
="
339
"/>
panſionem mediocrem quam pars illa habet in loco ſuo primo
<
lb
/>
<
arrow.to.target
n
="
note347
"/>
<
emph
type
="
italics
"/>
EG,
<
emph.end
type
="
italics
"/>
ut V-
<
emph
type
="
italics
"/>
IM
<
emph.end
type
="
italics
"/>
ad V in itu, utque V+
<
emph
type
="
italics
"/>
im
<
emph.end
type
="
italics
"/>
ad V in reditu. </
s
>
<
s
>Unde
<
lb
/>
vis elaſtica puncti
<
emph
type
="
italics
"/>
F
<
emph.end
type
="
italics
"/>
in loco
<
foreign
lang
="
grc
">εγ</
foreign
>
, eſt ad vim ejus elaſticam medio
<
lb
/>
crem in loco
<
emph
type
="
italics
"/>
EG,
<
emph.end
type
="
italics
"/>
ut (I/V-
<
emph
type
="
italics
"/>
IM
<
emph.end
type
="
italics
"/>
) ad I/V in itu, in reditu vero ut
<
lb
/>
(I/V+
<
emph
type
="
italics
"/>
im
<
emph.end
type
="
italics
"/>
) ad I/V. </
s
>
<
s
>Et eodem argumento vires elaſticæ punctorum
<
lb
/>
Phyſieorum
<
emph
type
="
italics
"/>
E
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
G
<
emph.end
type
="
italics
"/>
in itu, ſunt ut (I/V-
<
emph
type
="
italics
"/>
HL
<
emph.end
type
="
italics
"/>
) & (I/V-
<
emph
type
="
italics
"/>
KN
<
emph.end
type
="
italics
"/>
)
<
lb
/>
ad I/V; & virium differentia ad Medii vim elaſticam mediocrem,
<
lb
/>
ut (
<
emph
type
="
italics
"/>
HL-KN
<
emph.end
type
="
italics
"/>
/VV-VX
<
emph
type
="
italics
"/>
HL
<
emph.end
type
="
italics
"/>
-VX
<
emph
type
="
italics
"/>
KN+HLXKN
<
emph.end
type
="
italics
"/>
) ad I/V. </
s
>
<
s
>Hoc eſt, ut
<
lb
/>
(
<
emph
type
="
italics
"/>
HL-KN
<
emph.end
type
="
italics
"/>
/VV) ad I/V, ſive ut
<
emph
type
="
italics
"/>
HL-KN
<
emph.end
type
="
italics
"/>
ad V, ſi modo (ob angu
<
lb
/>
ſtos limites vibrationum) ſupponamus
<
emph
type
="
italics
"/>
HL
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
KN
<
emph.end
type
="
italics
"/>
indefinite
<
lb
/>
minores eſſe quantitate V. </
s
>
<
s
>Quare cum quantitas V detur, diffe
<
lb
/>
rentia virium eſt ut
<
emph
type
="
italics
"/>
HL-KN,
<
emph.end
type
="
italics
"/>
hoc eſt (ob proportionales
<
lb
/>
<
emph
type
="
italics
"/>
HL-KN
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
HK,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
OM
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
OI
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
OP,
<
emph.end
type
="
italics
"/>
dataſque
<
emph
type
="
italics
"/>
HK
<
emph.end
type
="
italics
"/>
&
<
lb
/>
<
emph
type
="
italics
"/>
OP
<
emph.end
type
="
italics
"/>
) ut
<
emph
type
="
italics
"/>
OM
<
emph.end
type
="
italics
"/>
; id eſt, ſi
<
emph
type
="
italics
"/>
Ff
<
emph.end
type
="
italics
"/>
biſecetur in
<
foreign
lang
="
grc
">Ω</
foreign
>
, ut
<
foreign
lang
="
grc
">Ωφ. </
foreign
>
</
s
>
<
s
>Et eodem
<
lb
/>
argumento differentia virium elaſticarum punctorum Phyſieorum
<
lb
/>
<
foreign
lang
="
grc
">ε</
foreign
>
&
<
foreign
lang
="
grc
">γ</
foreign
>
, in reditu lineolæ Phyſicæ
<
foreign
lang
="
grc
">εγ</
foreign
>
eſt ut
<
foreign
lang
="
grc
">Ωφ. </
foreign
>
</
s
>
<
s
>Sed differentia
<
lb
/>
illa (id eſt, exceſſus vis elaſticæ puncti
<
foreign
lang
="
grc
">ε</
foreign
>
ſupra vim elaſticam pun
<
lb
/>
cti
<
foreign
lang
="
grc
">γ</
foreign
>
,) eſt vis qua interjecta Medii lineola Phyſica
<
foreign
lang
="
grc
">εγ</
foreign
>
acceleratur;
<
lb
/>
& propterea vis acceleratrix lineolæ Phyſicæ
<
foreign
lang
="
grc
">εγ</
foreign
>
, eſt ut ipſius di
<
lb
/>
ſtantia a medio vibrationis loco
<
foreign
lang
="
grc
">Ω. </
foreign
>
</
s
>
<
s
>Proinde tempus (per Prop. </
s
>
<
s
>
<
lb
/>
XXXVIII. Lib. </
s
>
<
s
>1.) recte exponitur per arcum
<
emph
type
="
italics
"/>
PI
<
emph.end
type
="
italics
"/>
; & Medii pars
<
lb
/>
linearis
<
foreign
lang
="
grc
">εγ</
foreign
>
lege præſcripta movetur, id eſt, lege oſcillantis Pen
<
lb
/>
duli: eſtque par ratio partium omnium linearium ex quibus Me
<
lb
/>
dium totum componitur.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note347
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
Hinc patet quod numerus pulſuum propagatorum idem
<
lb
/>
ſit cum numero vibrationum corporis tremuli, neque multiplica
<
lb
/>
tur in eorum progreſſu. </
s
>
<
s
>Nam lineola Phyſica
<
foreign
lang
="
grc
">εγ</
foreign
>
, quamprimum
<
lb
/>
ad locum ſuum primum redierit, quieſcet; neQ.E.D.inceps move
<
lb
/>
bitur, niſi vel ab impetu corporis tremuli, vel ab impetu pulſuum
<
lb
/>
qui a corpore tremulo propagantur, motu novo cieatur. </
s
>
<
s
>Quie
<
lb
/>
ſcet igitur quamprimum pulſus a corpore tremulo propagari
<
lb
/>
deſinunt. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>