Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
361
362
363
364
365
366
367
368
369
370
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/369.jpg
"
pagenum
="
341
"/>
tus iidem peragantur ac prius, augebitur in ſubduplicata ratione
<
lb
/>
<
arrow.to.target
n
="
note349
"/>
denſitatis, ac diminuetur in ſubduplicata ratione vis Elaſticæ. </
s
>
<
s
>Et
<
lb
/>
propterea velocitas pulſuum erit in ratione compoſita ex ratione
<
lb
/>
ſubduplicata denſitatis Medii inverſe & ratione ſubduplicata vis
<
lb
/>
Elaſticæ directe.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note349
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Hæc Propoſitio ulterius patebit ex conſtructione ſequentis. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XLIX. PROBLEMA XI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Datis Medii denſitate & vi Elaſtica, invenire velocitatem pul
<
lb
/>
ſuum.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Fingamus Medium ab incumbente pondere, pro more Aeris
<
lb
/>
noſtri comprimi; ſitque A altitudo Medii homogenei, cujus pon
<
lb
/>
dus adæquet pondus incumbens, & cujus denſitas eadem ſit cum
<
lb
/>
denſitate Medii compreſſi, in quo pulſus propagantur. </
s
>
<
s
>Conſti
<
lb
/>
tui autem intelligatur Pendulum, cujus longitudo inter punctum
<
lb
/>
ſuſpenſionis & centrum oſcillationis ſit A: & quo tempore Pen
<
lb
/>
dulum illud oſcillationem integram ex itu & reditu compoſitam
<
lb
/>
peragit, eodem pulſus eundo conficiet ſpatium circumferentiæ
<
lb
/>
circuli radio A deſcripti æquale. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam ſtantibus quæ in Propoſitione XLVII conſtructa ſunt,
<
lb
/>
ſi linea quævis Phyſica
<
emph
type
="
italics
"/>
EF,
<
emph.end
type
="
italics
"/>
ſingulis vibrationibus deſcribendo
<
lb
/>
ſpatium
<
emph
type
="
italics
"/>
PS,
<
emph.end
type
="
italics
"/>
urgeatur in extremis itus & reditus cujuſque locis
<
lb
/>
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
a vi Elaſtica quæ ipſius ponderi æquetur; peraget hæc
<
lb
/>
vibrationes ſingulas quo tempore eadem in Cycloide, cujus peri
<
lb
/>
meter tota longitudini
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
æqualis eſt, oſcillari poſſet: id adeo
<
lb
/>
quia vires æquales æqualia corpuſcula per æqualia ſpatia ſimul im
<
lb
/>
pellent. </
s
>
<
s
>Quare cum oſcillationum tempora ſint in ſubduplicata
<
lb
/>
ratione longitudinis Pendulorum, & longitudo Penduli æquetur
<
lb
/>
dimidio arcui Cycloidis totius; foret tempus vibrationis unius ad
<
lb
/>
tempus oſcillationis Penduli cujus longitudo eſt A, in ſubdupli
<
lb
/>
cata ratione longitudinis 1/2
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
PO
<
emph.end
type
="
italics
"/>
ad longitudinem A. </
s
>
<
s
>Sed
<
lb
/>
vis Elaſtica qua lineola Phyſica
<
emph
type
="
italics
"/>
EG,
<
emph.end
type
="
italics
"/>
in locis ſuis extremis
<
emph
type
="
italics
"/>
P, S
<
emph.end
type
="
italics
"/>
<
lb
/>
exiſtens, urgetur, erat (in demonſtratione Propoſitionis XLVII)
<
lb
/>
ad ejus vim totam Elaſticam ut
<
emph
type
="
italics
"/>
HL-KN
<
emph.end
type
="
italics
"/>
ad V, hoc eſt
<
lb
/>
(cum punctum
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
jam incidat in
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
) ut
<
emph
type
="
italics
"/>
HK
<
emph.end
type
="
italics
"/>
ad V: & vis illa
<
lb
/>
tota, hoc eſt pondus incumbens, quo lineola
<
emph
type
="
italics
"/>
EG
<
emph.end
type
="
italics
"/>
comprimitur,
<
lb
/>
eſt ad pondus lineolæ ut ponderis incumbentis altitudo A ad line
<
lb
/>
olæ longitudinem
<
emph
type
="
italics
"/>
EG
<
emph.end
type
="
italics
"/>
; adeoque ex æquo, vis qua lineola
<
emph
type
="
italics
"/>
EG
<
emph.end
type
="
italics
"/>
in
<
lb
/>
locis ſuis
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
urgetur, eſt ad lineolæ illius pondus ut
<
emph
type
="
italics
"/>
HK
<
emph.end
type
="
italics
"/>
XA
<
lb
/>
ad VX
<
emph
type
="
italics
"/>
EG,
<
emph.end
type
="
italics
"/>
ſive ut
<
emph
type
="
italics
"/>
PO
<
emph.end
type
="
italics
"/>
XA ad VV, nam
<
emph
type
="
italics
"/>
HK
<
emph.end
type
="
italics
"/>
erat ad
<
emph
type
="
italics
"/>
EG
<
emph.end
type
="
italics
"/>
ut </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>