Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
361
(341)
362
(342)
363
(343)
364
(344)
365
(345)
366
(346)
367
(347)
368
(348)
369
(349)
370
(350)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(350)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div841
"
type
="
section
"
level
="
1
"
n
="
497
">
<
p
>
<
s
xml:id
="
echoid-s8794
"
xml:space
="
preserve
">
<
pb
o
="
350
"
file
="
0370
"
n
="
370
"
rhead
="
GEOMETRIÆ
"/>
nia plana dictarum conoidum, alijs figuris ſimilibus ſeorſim in
<
lb
/>
vnoquoque ſolido aſsumptis, inter ſe eandem rationem, quam prę-
<
lb
/>
dictæ ſimiles ellipſes habentibus, quod ea ſolida, quorum aſsum-
<
lb
/>
ptæ fimiles figuræ ſunt omnia plana, erunt inter ſe æ qualia, dum
<
lb
/>
diametri genitricium eorundem figurarum, quæ ſunt abſciſsæ pa-
<
lb
/>
rabolæ, inter ſe quoq; </
s
>
<
s
xml:id
="
echoid-s8795
"
xml:space
="
preserve
">æquales fuerint.</
s
>
<
s
xml:id
="
echoid-s8796
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div842
"
type
="
section
"
level
="
1
"
n
="
498
">
<
head
xml:id
="
echoid-head518
"
xml:space
="
preserve
">COROLLARIVM VI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s8797
"
xml:space
="
preserve
">IN Propoſ. </
s
>
<
s
xml:id
="
echoid-s8798
"
xml:space
="
preserve
">28. </
s
>
<
s
xml:id
="
echoid-s8799
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s8800
"
xml:space
="
preserve
">eius Coroll. </
s
>
<
s
xml:id
="
echoid-s8801
"
xml:space
="
preserve
">aſsum pta illius figura, & </
s
>
<
s
xml:id
="
echoid-s8802
"
xml:space
="
preserve
">facto ſo-
<
lb
/>
lito exemplo per reuolutionem, ADH, parabolæ circa axim,
<
lb
/>
<
figure
xlink:label
="
fig-0370-01
"
xlink:href
="
fig-0370-01a
"
number
="
252
">
<
image
file
="
0370-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0370-01
"/>
</
figure
>
DO, habetur, quod ſi conois paraboli-
<
lb
/>
ca, ADH, in reuolutione deſcripta
<
lb
/>
ſecetur quomodocunque planis ſiue
<
lb
/>
ad axem rectis, ſiue obliquis, quod ab-
<
lb
/>
fcifsæ conoides erunt inter ſe, vt qua-
<
lb
/>
drata diametrorum eorundem, Nam
<
lb
/>
vt omnia quadrata, BDF, regula, BF,
<
lb
/>
quæ axim, DO, rectè ſecat, ad rectan-
<
lb
/>
gula ſub parabola, CEG, & </
s
>
<
s
xml:id
="
echoid-s8803
"
xml:space
="
preserve
">figura di-
<
lb
/>
ftantiarum, ERG, ita eſse omnes circulos, BDF, diametros in ea ſi-
<
lb
/>
tas habentes, ſumptos iuxta regulam, BF, ad omnes ſimiles elli-
<
lb
/>
pſes figuræ genitricis, CEG, ſumptas iuxta regulam, CG, quarum
<
lb
/>
diametri maiores ſunt in figura, CEG, minores verò in figura di-
<
lb
/>
ſtantiarum, REG, oſtendemus, methodo antecedentis, ergo dicti
<
lb
/>
omnes circuli parabolæ, BDF, ad dictas omnes ellipſes parabolæ,
<
lb
/>
CEG, erunt vt quadratum, DN, ad quadratum, EM, ergo & </
s
>
<
s
xml:id
="
echoid-s8804
"
xml:space
="
preserve
">co-
<
lb
/>
nois parabolica, BDF, ad conoidem parabolicam, CEG, erit vt
<
lb
/>
quadratum, DN, ad quadratum, EM, vnde, conuertendo, conois
<
lb
/>
parabolica, GEC, ad conoidem parabolicam, FDB, erit vt qua-
<
lb
/>
dratum, EM, ad quadratum, DN, ſi ergo aliud planum, vtcunq;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8805
"
xml:space
="
preserve
">obliquè axem, DO, ſecauerit, erit conois parabolica, BDF, ad
<
lb
/>
hanc conoidem vltimò reſectam, vt quadratum, DN, ad quadra-
<
lb
/>
tum diametri huius reſectæ conodis, ergo ex æquali conois pa-
<
lb
/>
rabolica, CEG, ad hanc conoidem vltimò reſectam, cuius baſis
<
lb
/>
pariter obliquè ſecat axim, DO, erit vt quadratum, EM, ad huius
<
lb
/>
diametri quadratum, quomodocunque igitur reſecetur conois pla-
<
lb
/>
nis axem ſecantibus, reſecta ſegmenta ſunt, vt diametrorum qua-
<
lb
/>
drata. </
s
>
<
s
xml:id
="
echoid-s8806
"
xml:space
="
preserve
">Sed vniuerſaliter, ſi, vice circulorum, vel dictarum ellipſium,
<
lb
/>
ſummamus alias figuras ſimiles in vnoquoq; </
s
>
<
s
xml:id
="
echoid-s8807
"
xml:space
="
preserve
">ſolido ſeorſim, quo-
<
lb
/>
rum ſunt omnia plana, ijs exiſtentibus omnibus figuris </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>