Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
371
372
373
374
375
376
377
378
379
380
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/371.jpg
"
pagenum
="
343
"/>
(per Prop. </
s
>
<
s
>XLI. & XLII.) conſiſtere nequit. </
s
>
<
s
>Soni vero propterea
<
lb
/>
<
arrow.to.target
n
="
note351
"/>
quod a corporibus tremulis oriantur, nihil aliud ſunt quam aeris
<
lb
/>
pulſus propagati, per Prop. </
s
>
<
s
>XLIII. </
s
>
<
s
>Confirmatur id ex tremoribus
<
lb
/>
quos excitant in corporibus objectis, ſi modo vehementes ſint &
<
lb
/>
graves, quales ſunt ſoni Tympanorum. </
s
>
<
s
>Nam tremores celeriores
<
lb
/>
& breviores difficilius excitantur. </
s
>
<
s
>Sed & ſonos quoſvis, in chor
<
lb
/>
das corporibus ſonoris uniſonas impactos, exeſtare tremores notiſ
<
lb
/>
ſimum eſt. </
s
>
<
s
>Confirmatur etiam ex velocitate ſonorum. </
s
>
<
s
>Nam cum
<
lb
/>
pondera ſpecifica Aquæ pluvialis & Argenti vivi ſint ad invicem
<
lb
/>
ut 1 ad 13 2/3 circiter, & ubi Mercurius in
<
emph
type
="
italics
"/>
Barometro
<
emph.end
type
="
italics
"/>
altitudinem
<
lb
/>
attingit digitorum
<
emph
type
="
italics
"/>
Anglieorum
<
emph.end
type
="
italics
"/>
30, pondus ſpecificum Aeris &
<
lb
/>
aquæ pluvialis ſint ad invicem ut 1 ad 870 circiter: erunt pon
<
lb
/>
dera ſpecifica aeris & argenti vivi ut 1 ad 11890. Proinde cum
<
lb
/>
altitudo argenti vivi ſit 30 digitorum, altitudo aeris uniformis,
<
lb
/>
cujus pondus aerem noſtrum ſubjectum comprimere poſſet, erit
<
lb
/>
356700 digitorum, ſeu pedum
<
emph
type
="
italics
"/>
Anglieorum
<
emph.end
type
="
italics
"/>
29725. Eſtque hæc
<
lb
/>
altitudo illa ipſa quam in conſtructione ſuperioris Problematis no
<
lb
/>
minavimus A. </
s
>
<
s
>Circuli radio 29725 pedum deſcripti circumferen
<
lb
/>
tia eſt pedum 186768. Et cum Pendulum digitos 39 1/5 longum,
<
lb
/>
oſcillationem ex itu & reditu compoſitam, tempore minutorum
<
lb
/>
duorum ſecundorum, uti notum eſt, abſolvat; Pendulum pedes
<
lb
/>
29725, ſeu digitos 356700 longum, oſcillationem conſimilem tem
<
lb
/>
pore minutorum ſecundorum 190 3/4 abſolvere debebit. </
s
>
<
s
>Eo igitur
<
lb
/>
tempore ſonus progrediendo conſiciet pedes 186768, adeoque
<
lb
/>
tempore minuti unius ſecundi pedes 979. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note351
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Cæterum in hoc computo nulla habetur ratio craſſitudinis ſoli
<
lb
/>
darum particularum aeris, per quam ſonus utique propagatur in
<
lb
/>
inſtanti. </
s
>
<
s
>Cum pondus aeris ſit ad pondus aquæ ut 1 ad 870, &
<
lb
/>
ſales ſint fere duplo denſiores quam aqua; ſi particulæ aeris po
<
lb
/>
nantur eſſe ejuſdem circiter denſitatis cum particulis vel aquæ
<
lb
/>
vel ſalium, & raritas aeris oriatur ab intervallis particularum:
<
lb
/>
diameter particulæ aeris erit ad intervallum inter centra parti
<
lb
/>
cularum, ut 1 ad 9 vel 10 circiter, & ad intervallum inter par
<
lb
/>
ticulas ut 1 ad 8 vel 9. Proinde ad pedes 979 quos ſonus tem
<
lb
/>
pore minuti unius ſecundi juxta calculum ſuperiorem conficiet,
<
lb
/>
addere licet pedes (979/9) ſeu 109 circiter, ob craſſitudinem particu
<
lb
/>
larum aeris: & ſie ſonus tempore minuti unius ſecundi conficiet
<
lb
/>
pedes 1088 circiter. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>His adde quod vapores in aere latentes, cum ſint alterius ela
<
lb
/>
teris & alterius toni, vix aut ne vix quidem participant motum
<
lb
/>
aeris veri quo ſoni propagantur. </
s
>
<
s
>His autem quieſcentibus, mo-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>