Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
371
(351)
372
(352)
373
(353)
374
(354)
375
(355)
376
(356)
377
(357)
378
(358)
379
(359)
380
(360)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(352)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div844
"
type
="
section
"
level
="
1
"
n
="
499
">
<
p
>
<
s
xml:id
="
echoid-s8825
"
xml:space
="
preserve
">
<
pb
o
="
352
"
file
="
0372
"
n
="
372
"
rhead
="
GEOMETRIÆ
"/>
ſolida, BAE, ad conoidem parabolicam, ACE, vt quadratum, MO,
<
lb
/>
cum rectangulo bis ſub, MOC, ad quadratum, MC, ergo, ex æqua-
<
lb
/>
li, portio ſolida, ABE, ad portionem ſolidam, BDE, erit vt qua-
<
lb
/>
dratum, MO, cum rectangulo bis ſub, MOC, ad quad. </
s
>
<
s
xml:id
="
echoid-s8826
"
xml:space
="
preserve
">ON, cum re-
<
lb
/>
ctang. </
s
>
<
s
xml:id
="
echoid-s8827
"
xml:space
="
preserve
">bis ſub, ONC, quod &</
s
>
<
s
xml:id
="
echoid-s8828
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s8829
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8830
"
xml:space
="
preserve
">Sed vniuerſaliter ſi ſint ſolida ſimilaria genita ex parabolis, ACE,
<
lb
/>
BCD, iuxta communem regulam, AE, & </
s
>
<
s
xml:id
="
echoid-s8831
"
xml:space
="
preserve
">ducatur planum per, BE,
<
lb
/>
rectum plano parabolæ, ACE, ſcindens ſolidum ſimilare genitum
<
lb
/>
ex, BDEA, in duas portiones ſolidas, BAE, BDE, adhuc, conſe-
<
lb
/>
quenter ſupradictis, inueniemus has duas portiones ſolidas eſſe in
<
lb
/>
eadem ratione, vt portiones ſolidæ productæ ex ſectione fruſti co-
<
lb
/>
noidis parabolicæ, BAED, .</
s
>
<
s
xml:id
="
echoid-s8832
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s8833
"
xml:space
="
preserve
">eſſe vt quadratum, MO, cum rectan-
<
lb
/>
gulo bis ſub, MOC, ad quadrat, ũON, cum rectangulo bis ſub, ONC,
<
lb
/>
quod ex ſupradictis erui facilè poteſt; </
s
>
<
s
xml:id
="
echoid-s8834
"
xml:space
="
preserve
">quæ demonſtratio currit etiã,
<
lb
/>
ſi, CM, non ſit axis, ſed tantum diameter, vt confideranti clarè
<
lb
/>
patebit.</
s
>
<
s
xml:id
="
echoid-s8835
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div846
"
type
="
section
"
level
="
1
"
n
="
500
">
<
head
xml:id
="
echoid-head520
"
xml:space
="
preserve
">A. COROLL. VII. SECTIO I.</
head
>
<
note
position
="
left
"
xml:space
="
preserve
">A.</
note
>
<
p
>
<
s
xml:id
="
echoid-s8836
"
xml:space
="
preserve
">IN Prop. </
s
>
<
s
xml:id
="
echoid-s8837
"
xml:space
="
preserve
">29. </
s
>
<
s
xml:id
="
echoid-s8838
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s8839
"
xml:space
="
preserve
">Cor. </
s
>
<
s
xml:id
="
echoid-s8840
"
xml:space
="
preserve
">Sect. </
s
>
<
s
xml:id
="
echoid-s8841
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s8842
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s8843
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s8844
"
xml:space
="
preserve
">colligimus ſolida ſimilaria geni-
<
lb
/>
ta ex parabolis in eadem altitudine conſtitutis, genita inquam
<
lb
/>
iuxta regulas ipſarum baſes, eſſe inter ſe, vt quadrata baſium, & </
s
>
<
s
xml:id
="
echoid-s8845
"
xml:space
="
preserve
">in
<
lb
/>
ijſdem baſibus conſtitutis, vt earum altitudines, vel vt diametros
<
lb
/>
æqualiter baſibus inclinatas; </
s
>
<
s
xml:id
="
echoid-s8846
"
xml:space
="
preserve
">hoc igitur nedum concluditur de co-
<
lb
/>
noidibus parabolicis in eadem altitudine ſtantibus, quod ſit, vt qua-
<
lb
/>
drata baſium, vel in eadem baſi exiſtentium, quod ſint, vt altitu-
<
lb
/>
dines, ſed de cæteris ſimilaribus ſolidis ex ipſis parabolis genitis
<
lb
/>
iuxta regulas baſes, vt dictum eſt.</
s
>
<
s
xml:id
="
echoid-s8847
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div847
"
type
="
section
"
level
="
1
"
n
="
501
">
<
head
xml:id
="
echoid-head521
"
xml:space
="
preserve
">B. SECTIO II.</
head
>
<
note
position
="
left
"
xml:space
="
preserve
">B.</
note
>
<
p
>
<
s
xml:id
="
echoid-s8848
"
xml:space
="
preserve
">ITem habemus conoides parabolicas, & </
s
>
<
s
xml:id
="
echoid-s8849
"
xml:space
="
preserve
">cætera ſolida ſimilaria
<
lb
/>
ex parabolis genita iuxta regulas baſes, habere inter ſe ratio-
<
lb
/>
nem eompoſitam ex ratione quadratorum baſium, & </
s
>
<
s
xml:id
="
echoid-s8850
"
xml:space
="
preserve
">altitudi-
<
lb
/>
num, vel diametrorum æqualiter baſibus inclinatarum.</
s
>
<
s
xml:id
="
echoid-s8851
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div848
"
type
="
section
"
level
="
1
"
n
="
502
">
<
head
xml:id
="
echoid-head522
"
xml:space
="
preserve
">C. SECTIO III.</
head
>
<
note
position
="
left
"
xml:space
="
preserve
">C.</
note
>
<
p
>
<
s
xml:id
="
echoid-s8852
"
xml:space
="
preserve
">ITem eadem ſolida, quarum baſes altitudinibus, vel diametris
<
lb
/>
æqualiter baſibus inclinatis reciprocantur, eſſe æqualia, & </
s
>
<
s
xml:id
="
echoid-s8853
"
xml:space
="
preserve
">
<
lb
/>
quæ ſunt æqualia habere baſes altitudinibus, vel diametris æqua-
<
lb
/>
liter baſibus inclinatis, reciprocas.</
s
>
<
s
xml:id
="
echoid-s8854
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>