Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
371
372
373
374
375
376
377
378
379
380
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/373.jpg
"
pagenum
="
345
"/>
<
arrow.to.target
n
="
note353
"/>
</
s
>
</
p
>
</
subchap2
>
<
subchap2
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note353
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
SECTIO IX.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
De motu Circulari Fluidorum.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
HYPOTHESIS.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
REſiſtentiam, quæ oritur ex defectu lubricitatis partium Fluidi,
<
lb
/>
cæteris paribus, proportionalem eſſe velocitati, qua partes
<
lb
/>
Fluidi ſeparantur ab invicem.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITION LI. THEOREMA XXXIX.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Cylindrus ſolidus infinite longus in Fluido uniformi & infinito
<
lb
/>
circa axem poſitione datum uniformi cum motu revolvatur, &
<
lb
/>
ab hujus impulſu ſolo agatur Fluidum in orbem, perſeveret
<
lb
/>
autera Fluidi pars unaquæque uniformiter in motu ſuo; dico
<
lb
/>
quod tempora periodica partium Fluidi ſunt ut ipſarum diſtantiæ
<
lb
/>
ab axe Cylindri.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Sit
<
emph
type
="
italics
"/>
AFL
<
emph.end
type
="
italics
"/>
Cylindrus uNI
<
lb
/>
<
figure
id
="
id.039.01.373.1.jpg
"
xlink:href
="
039/01/373/1.jpg
"
number
="
200
"/>
<
lb
/>
formiter circa axem
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
in or
<
lb
/>
bem actus, & circulis con
<
lb
/>
centricis
<
emph
type
="
italics
"/>
BGM, CHN,
<
lb
/>
DIO, EKP,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>diſtin
<
lb
/>
guatur Fluidum in Orbes cy
<
lb
/>
lindricos innumeros concen
<
lb
/>
tricos ſolidos ejuſdem craſſi
<
lb
/>
tudinis. </
s
>
<
s
>Et quoniam homo
<
lb
/>
geneum eſt Fluidum, im
<
lb
/>
preſſiones contiguorum Or
<
lb
/>
bium in ſe mutuo factæ,
<
lb
/>
erunt (per Hypotheſin) ut
<
lb
/>
eorum tranſlationes ab invicem & ſuperficies contiguæ in quibus
<
lb
/>
impreſſiones fiunt. </
s
>
<
s
>Si impreſſio in Orbem aliquem major eſt vel </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>