Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
371
372
373
374
375
376
377
378
379
380
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/375.jpg
"
pagenum
="
347
"/>
tionum tempora ut ipſorum ſemidiametri, & perſeveret fluidi pars
<
lb
/>
<
arrow.to.target
n
="
note355
"/>
unaquæQ.E.I. motu ſuo: erunt partium ſingularum tempora peri
<
lb
/>
odica ut ipſarum diſtantiæ ab axe cylindrorum. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note355
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Si cylindro & fluido ad hunc modum motis addatur
<
lb
/>
vel auferatur communis quilibet motus angularis; quoniam hoc
<
lb
/>
novo motu non mutatur attritus mutuus partium fluidi, non mu
<
lb
/>
tabuntur motus partium inter ſe. </
s
>
<
s
>Nam tranſlationes partium ab
<
lb
/>
invicem pendent ab attritu. </
s
>
<
s
>Pars quælibet in eo perſeverabit
<
lb
/>
motu, qui, attritu utrinQ.E.I. contrarias partes facto, non magis
<
lb
/>
acceleratur quam retardatur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
4. Unde ſi toti cylindrorum & fluidi Syſtemati auferatur
<
lb
/>
motus omnis angularis cylindri exterioris, habebitur motus fluidi
<
lb
/>
in cylindro quieſcente. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
5. Igitur ſi fluido & cylindro exteriore quieſcentibus, re
<
lb
/>
volvatur cylindrus interior uniformiter; communicabitur motus
<
lb
/>
circularis fluido, & paulatim per totum fluidum propagabitur;
<
lb
/>
nec prius deſinet augeri quam fluidi partes ſingulæ motum Corol
<
lb
/>
lario quarto definitum acquirant. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
6. Et quoniam fluidum conatur motum ſuum adhuc latius
<
lb
/>
propagare, hujus impetu circumagetur etiam cylindrus exterior
<
lb
/>
niſi violenter detentus; & accelerabitur ejus motus quoad uſque
<
lb
/>
tempora periodica cylindri utriuſque æquentur inter ſe. </
s
>
<
s
>Quod ſi
<
lb
/>
cylindrus exterior violenter detineatur, conabitur is motum fluidi
<
lb
/>
retardare; & niſi cylindrus interior vi aliqua extrinſecus impreſſa
<
lb
/>
motum illum conſervet, efficiet ut idem paulatim ceſſet. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Quæ omnia in Aqua profunda ſtagnante experiri licet. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO LII. THEOREMA XL.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Sphæra ſolida, in Fluido uniformi & infinito, circa axem poſi
<
lb
/>
tione datum uniformi cum motu revolvatur, & ab hujus im
<
lb
/>
pulſu ſolo agatur Fluidum in orbem; perſeveret autem Fluidi
<
lb
/>
pars unaquæque uniformiter in motu ſuo: dico quod tem
<
lb
/>
pora periodica partium Fluidi erunt ut quadrata diſtantiarum
<
lb
/>
à centro Sphæræ.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
1. Sit
<
emph
type
="
italics
"/>
AFL
<
emph.end
type
="
italics
"/>
Sphæra uniformiter circa axem
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
in orbem
<
lb
/>
acta, & circulis concentricis
<
emph
type
="
italics
"/>
BGM, CHN, DIO, EKP,
<
emph.end
type
="
italics
"/>
&c. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>