Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
371
372
373
374
375
376
377
378
379
380
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/380.jpg
"
pagenum
="
352
"/>
<
arrow.to.target
n
="
note360
"/>
motibus revolvebantur, permittatur Syſtema totum Legibus Me
<
lb
/>
chanicis; vas & globus in ſe invicem agent mediante fluido, ne
<
lb
/>
que motus ſuos in ſe mutuo per fluidum propagare prius ceſſa
<
lb
/>
bunt, quam eorum tempora periodica æquentur inter ſe, & Syſte
<
lb
/>
ma totum ad inſtar corporis unius ſolidi ſimul revolvatur. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note360
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Scholium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>In his omnibus ſuppono fluidum ex materia quoad denſitatem
<
lb
/>
& fluiditatem uniformi conſtare. </
s
>
<
s
>Tale eſt in quo globus idem
<
lb
/>
codem cum motu, in eodem temporis intervallo, motus ſimiles &
<
lb
/>
æquales, ad æquales ſemper à ſe diſtantias, ubivis in fluido conſti
<
lb
/>
tutus, propagare poſſit. </
s
>
<
s
>Conatur quidem materia per motum
<
lb
/>
ſuum circularem recedere ab axe Vorticis, & propterea premit
<
lb
/>
materiam omnem ulteriorem. </
s
>
<
s
>Ex hac preſſione fit attritus par
<
lb
/>
tium fortior & ſeparatio ab invicem difficilior; & per conſequens
<
lb
/>
diminuitur materiæ fluiditas. </
s
>
<
s
>Rurſus ſi partes fluidi ſunt alicubi
<
lb
/>
craſſiores ſeu majores, fluiditas ibi minor erit, ob pauciores ſuper
<
lb
/>
ficies in quibus partes ſeparentur ab invicem. </
s
>
<
s
>In hujuſmodi caſi
<
lb
/>
bus deficientem fluiditatem vel lubricitate partium vel lentore alia
<
lb
/>
ve aliqua conditione reſtitui ſuppono. </
s
>
<
s
>Hoc niſi fiat, materia ubi
<
lb
/>
minus fluida eſt magis cohærebit & ſegnior erit, adeoque motum
<
lb
/>
tardius recipiet & longius propagabit quam pro ratione ſuperius
<
lb
/>
aſſignata. </
s
>
<
s
>Si figura vaſis non ſit Sphærica, movebuntur particulæ
<
lb
/>
in lineis non circularibus ſed conformibus eidem vaſis figuræ, &
<
lb
/>
tempora periodica erunt ut quadrata mediocrium diſtantiarum à
<
lb
/>
centro quamproxime. </
s
>
<
s
>In partibus inter centrum & circumferen
<
lb
/>
tiam, ubi latiora ſunt ſpatia, tardiores erunt motus, ubi anguſtiora
<
lb
/>
velociores, neque tamen particulæ velociores petent circumferen
<
lb
/>
tiam. </
s
>
<
s
>Arcus enim deſcribent minus curvos, & conatus recedendi
<
lb
/>
à centro non minus diminuetur per decrementum hujus curva
<
lb
/>
turæ, quam augebitur per incrementum velocitatis. </
s
>
<
s
>Pergendo a
<
lb
/>
ſpatiis anguſtioribus in latiora recedent paulo longius a centro,
<
lb
/>
ſed iſto receſſu tardeſcent; & accedendo poſtea de latioribus ad
<
lb
/>
anguſtiora accelerabuntur, & ſic per vices tardeſcent & accelera
<
lb
/>
buntur particulæ ſingulæ in perpetuum. </
s
>
<
s
>Hæc ita ſe habebunt in
<
lb
/>
vaſe rigido. </
s
>
<
s
>Nam in fluido infinito conſtitutio Vorticum innote
<
lb
/>
ſcit per Propoſitionis hujus Corollarium ſextum. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Proprietates autem Vorticum hac Propoſitione inveſtigare co
<
lb
/>
natus ſum, ut pertentarem ſiqua ratione Phænomena cœleſtia per </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>