Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
371
371
372
372
373
373
374
374
375
375
376
376
377
377
378
378
379
379
380
380
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/380.jpg" pagenum="352"/>
                    <arrow.to.target n="note360"/>
                  motibus revolvebantur, permittatur Syſtema totum Legibus Me­
                    <lb/>
                  chanicis; vas & globus in ſe invicem agent mediante fluido, ne­
                    <lb/>
                  que motus ſuos in ſe mutuo per fluidum propagare prius ceſſa­
                    <lb/>
                  bunt, quam eorum tempora periodica æquentur inter ſe, & Syſte­
                    <lb/>
                  ma totum ad inſtar corporis unius ſolidi ſimul revolvatur. </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note360"/>
                  DE MOTU
                    <lb/>
                  CORPORUM</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                    <emph type="italics"/>
                  Scholium.
                    <emph.end type="italics"/>
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>In his omnibus ſuppono fluidum ex materia quoad denſitatem
                    <lb/>
                  & fluiditatem uniformi conſtare. </s>
                  <s>Tale eſt in quo globus idem
                    <lb/>
                  codem cum motu, in eodem temporis intervallo, motus ſimiles &
                    <lb/>
                  æquales, ad æquales ſemper à ſe diſtantias, ubivis in fluido conſti­
                    <lb/>
                  tutus, propagare poſſit. </s>
                  <s>Conatur quidem materia per motum
                    <lb/>
                  ſuum circularem recedere ab axe Vorticis, & propterea premit
                    <lb/>
                  materiam omnem ulteriorem. </s>
                  <s>Ex hac preſſione fit attritus par­
                    <lb/>
                  tium fortior & ſeparatio ab invicem difficilior; & per conſequens
                    <lb/>
                  diminuitur materiæ fluiditas. </s>
                  <s>Rurſus ſi partes fluidi ſunt alicubi
                    <lb/>
                  craſſiores ſeu majores, fluiditas ibi minor erit, ob pauciores ſuper­
                    <lb/>
                  ficies in quibus partes ſeparentur ab invicem. </s>
                  <s>In hujuſmodi caſi­
                    <lb/>
                  bus deficientem fluiditatem vel lubricitate partium vel lentore alia­
                    <lb/>
                  ve aliqua conditione reſtitui ſuppono. </s>
                  <s>Hoc niſi fiat, materia ubi
                    <lb/>
                  minus fluida eſt magis cohærebit & ſegnior erit, adeoque motum
                    <lb/>
                  tardius recipiet & longius propagabit quam pro ratione ſuperius
                    <lb/>
                  aſſignata. </s>
                  <s>Si figura vaſis non ſit Sphærica, movebuntur particulæ
                    <lb/>
                  in lineis non circularibus ſed conformibus eidem vaſis figuræ, &
                    <lb/>
                  tempora periodica erunt ut quadrata mediocrium diſtantiarum à
                    <lb/>
                  centro quamproxime. </s>
                  <s>In partibus inter centrum & circumferen­
                    <lb/>
                  tiam, ubi latiora ſunt ſpatia, tardiores erunt motus, ubi anguſtiora
                    <lb/>
                  velociores, neque tamen particulæ velociores petent circumferen­
                    <lb/>
                  tiam. </s>
                  <s>Arcus enim deſcribent minus curvos, & conatus recedendi
                    <lb/>
                  à centro non minus diminuetur per decrementum hujus curva­
                    <lb/>
                  turæ, quam augebitur per incrementum velocitatis. </s>
                  <s>Pergendo a
                    <lb/>
                  ſpatiis anguſtioribus in latiora recedent paulo longius a centro,
                    <lb/>
                  ſed iſto receſſu tardeſcent; & accedendo poſtea de latioribus ad
                    <lb/>
                  anguſtiora accelerabuntur, & ſic per vices tardeſcent & accelera­
                    <lb/>
                  buntur particulæ ſingulæ in perpetuum. </s>
                  <s>Hæc ita ſe habebunt in
                    <lb/>
                  vaſe rigido. </s>
                  <s>Nam in fluido infinito conſtitutio Vorticum innote­
                    <lb/>
                  ſcit per Propoſitionis hujus Corollarium ſextum. </s>
                </p>
                <p type="main">
                  <s>Proprietates autem Vorticum hac Propoſitione inveſtigare co­
                    <lb/>
                  natus ſum, ut pertentarem ſiqua ratione Phænomena cœleſtia per </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>