Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
381
382
383
384
385
386
387
388
389
390
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/381.jpg
"
pagenum
="
353
"/>
Vortices explicari poſſint. </
s
>
<
s
>Nam Phænomenon eſt, quod Planeta
<
lb
/>
<
arrow.to.target
n
="
note361
"/>
rum circa Jovem revolventium tempora periodica ſunt in ratione
<
lb
/>
ſeſquiplicata diſtantiarum a centro Jovis; & eadem Regula obti
<
lb
/>
net in Planetis qui circa Solem revolvuntur. </
s
>
<
s
>Obtinent autem hæ
<
lb
/>
Regulæ in Planetis utriſque quam accuratiſſime, quatenus obſer
<
lb
/>
vationes Aſtronomicæ hactenus prodidere. </
s
>
<
s
>Ideoque ſi Planetæ
<
lb
/>
illi à Vorticibus circa Jovem & Solem revolventibus deferantur,
<
lb
/>
debebunt etiam hi Vortices eadem lege revolvi. </
s
>
<
s
>Verum tempora
<
lb
/>
periodica partium Vorticis prodierunt in ratione duplicata diſtan
<
lb
/>
tiarum a centro motus: neque poteſt ratio illa diminui & ad ra
<
lb
/>
tionem ſeſquiplicatam reduci, niſi vel materia Vorticis eo fluidior
<
lb
/>
ſit quo longius diſtat a centro, vel reſiſtentia, quæ oritur ex de
<
lb
/>
fectu lubricitatis partium fluidi, ex aucta velocitate qua partes
<
lb
/>
fluidi ſeparantur ab invicem, augeatur in majori ratione quam ea
<
lb
/>
eſt in qua velocitas augetur. </
s
>
<
s
>Quorum tamen neutrum rationi
<
lb
/>
conſentaneum videtur. </
s
>
<
s
>Partes craſſiores & minus fluidæ (niſi gra
<
lb
/>
ves ſint in centrum) circumferentiam petent; & veriſimile eſt
<
lb
/>
quod, etiamſi Demonſtrationum gratia Hypotheſin talem initio
<
lb
/>
Sectionis hujus propoſuerim ut Reſiſtentia velocitati proportiona
<
lb
/>
lis eſſet, tamen Reſiſtentia in minori ſit ratione quam ea velocita
<
lb
/>
tis eſt. </
s
>
<
s
>Quo conceſſo, tempora periodica partium Vorticis erunt
<
lb
/>
in majori quam duplicata ratione diſtantiarum ab ipſius centro. </
s
>
<
s
>
<
lb
/>
Quod ſi Vortices (uti aliquorum eſt opinio) celerius moveantur
<
lb
/>
prope centrum, dein tardius uſque ad certum limitem, tum denuo
<
lb
/>
celerius juxta circumferentiam; certe nec ratio ſeſquiplicata neque
<
lb
/>
alia quævis certa ac determinata obtinere poteſt. </
s
>
<
s
>Viderint itaque
<
lb
/>
Philoſophi quo pacto Phænomenon illud rationis ſeſquiplicatæ per
<
lb
/>
Vortices explicari poſſit. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note361
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO LIII. THEOREMA XLI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corpora quæ in Vortice delata in orbem redeunt, ejuſdem ſunt den
<
lb
/>
ſitatis cum Vortice, & eadem lege cum ipſius partibus (quoad
<
lb
/>
velocitatem & curſus determinationem) moventur.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam ſi Vorticis pars aliqua exigua, cujus particulæ ſeu puncta
<
lb
/>
phyſica datum ſervant ſitum inter ſe, congelari ſupponatur: hæc,
<
lb
/>
quoniam neque quoad denſitatem ſuam, neque quoad vim inſitam
<
lb
/>
aut figuram ſuam mutatur, movebitur eadem lege ac prius: & </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>