Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
381
381
382
382
383
383
384
384
385
385
386
386
387
387
388
388
389
389
390
390
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/381.jpg" pagenum="353"/>
                  Vortices explicari poſſint. </s>
                  <s>Nam Phænomenon eſt, quod Planeta­
                    <lb/>
                    <arrow.to.target n="note361"/>
                  rum circa Jovem revolventium tempora periodica ſunt in ratione
                    <lb/>
                  ſeſquiplicata diſtantiarum a centro Jovis; & eadem Regula obti­
                    <lb/>
                  net in Planetis qui circa Solem revolvuntur. </s>
                  <s>Obtinent autem hæ
                    <lb/>
                  Regulæ in Planetis utriſque quam accuratiſſime, quatenus obſer­
                    <lb/>
                  vationes Aſtronomicæ hactenus prodidere. </s>
                  <s>Ideoque ſi Planetæ
                    <lb/>
                  illi à Vorticibus circa Jovem & Solem revolventibus deferantur,
                    <lb/>
                  debebunt etiam hi Vortices eadem lege revolvi. </s>
                  <s>Verum tempora
                    <lb/>
                  periodica partium Vorticis prodierunt in ratione duplicata diſtan­
                    <lb/>
                  tiarum a centro motus: neque poteſt ratio illa diminui & ad ra­
                    <lb/>
                  tionem ſeſquiplicatam reduci, niſi vel materia Vorticis eo fluidior
                    <lb/>
                  ſit quo longius diſtat a centro, vel reſiſtentia, quæ oritur ex de­
                    <lb/>
                  fectu lubricitatis partium fluidi, ex aucta velocitate qua partes
                    <lb/>
                  fluidi ſeparantur ab invicem, augeatur in majori ratione quam ea
                    <lb/>
                  eſt in qua velocitas augetur. </s>
                  <s>Quorum tamen neutrum rationi
                    <lb/>
                  conſentaneum videtur. </s>
                  <s>Partes craſſiores & minus fluidæ (niſi gra­
                    <lb/>
                  ves ſint in centrum) circumferentiam petent; & veriſimile eſt
                    <lb/>
                  quod, etiamſi Demonſtrationum gratia Hypotheſin talem initio
                    <lb/>
                  Sectionis hujus propoſuerim ut Reſiſtentia velocitati proportiona­
                    <lb/>
                  lis eſſet, tamen Reſiſtentia in minori ſit ratione quam ea velocita­
                    <lb/>
                  tis eſt. </s>
                  <s>Quo conceſſo, tempora periodica partium Vorticis erunt
                    <lb/>
                  in majori quam duplicata ratione diſtantiarum ab ipſius centro. </s>
                  <s>
                    <lb/>
                  Quod ſi Vortices (uti aliquorum eſt opinio) celerius moveantur
                    <lb/>
                  prope centrum, dein tardius uſque ad certum limitem, tum denuo
                    <lb/>
                  celerius juxta circumferentiam; certe nec ratio ſeſquiplicata neque
                    <lb/>
                  alia quævis certa ac determinata obtinere poteſt. </s>
                  <s>Viderint itaque
                    <lb/>
                  Philoſophi quo pacto Phænomenon illud rationis ſeſquiplicatæ per
                    <lb/>
                  Vortices explicari poſſit. </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note361"/>
                  LIBER
                    <lb/>
                  SECUNDUS.</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  PROPOSITIO LIII. THEOREMA XLI.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corpora quæ in Vortice delata in orbem redeunt, ejuſdem ſunt den­
                    <lb/>
                  ſitatis cum Vortice, & eadem lege cum ipſius partibus (quoad
                    <lb/>
                  velocitatem & curſus determinationem) moventur.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>Nam ſi Vorticis pars aliqua exigua, cujus particulæ ſeu puncta
                    <lb/>
                  phyſica datum ſervant ſitum inter ſe, congelari ſupponatur: hæc,
                    <lb/>
                  quoniam neque quoad denſitatem ſuam, neque quoad vim inſitam
                    <lb/>
                  aut figuram ſuam mutatur, movebitur eadem lege ac prius: & </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>