Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
381
382
383
384
385
386
387
388
389
390
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/382.jpg
"
pagenum
="
354
"/>
<
arrow.to.target
n
="
note362
"/>
contra, ſi Vorticis pars congelata & ſolida ejuſdem ſit denſitatis
<
lb
/>
cum reliquo Vortice, & reſolvatur in fluidum; movebitur hæc ea
<
lb
/>
dem lege ac prius, niſi quatenus ipſius particulæ jam fluidæ factæ
<
lb
/>
moveantur inter ſe. </
s
>
<
s
>Negligatur igitur motus particularum inter
<
lb
/>
ſe, tanquam ad totius motum progreſſivum nil ſpectans, & motus
<
lb
/>
totius idem erit ac prius. </
s
>
<
s
>Motus autem idem erit cum motu alia
<
lb
/>
rum Vorticis partium a centro æqualiter diſtantium, propterea
<
lb
/>
quod ſolidum in Fluidum reſolutum fit pars Vorticis cæteris parti
<
lb
/>
bus conſimilis. </
s
>
<
s
>Ergo ſolidum, ſi ſit ejuſdem denſitatis cum ma
<
lb
/>
teria Vorticis, eodem motu cum ipſius partibus movebitur, in ma
<
lb
/>
teria proxime ambiente relative quieſcens. </
s
>
<
s
>Sin denſius ſit, jam
<
lb
/>
magis conabitur recedere à centro Vorticis quam prius; adeoque
<
lb
/>
Vorticis vim illam, qua prius in Orbita ſua tanquam in æquilibrio
<
lb
/>
conſtitutum retinebatur, jam ſuperans, recedet a centro & revol
<
lb
/>
vendo deſcribet Spiralem, non amplius in eundem Orbem rediens
<
lb
/>
Et eodem argumento ſi rarius ſit, accedet ad centrum. </
s
>
<
s
>Igitur non
<
lb
/>
redibit in eundem Orbem niſi ſit ejuſdem denſitatis cum fluido
<
lb
/>
Eo autem in caſu oſtenſum eſt, quod revolveretur eadem lege cum
<
lb
/>
partibus fluidi à centro Vorticis æqualiter diſtantibus.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note362
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Ergo ſolidum quod in Vortice revolvitur & in eundem
<
lb
/>
Orbem ſemper redit, relative quieſcit in fluido cui innatat. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Et ſi Vortex ſit quoad denſitatem uniformis, corpus
<
lb
/>
idem ad quamlibet a centro Vorticis diſtantiam revolvi poteſt. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Scholium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Hinc liquet Planetas à Vorticibus corporeis non deferri. </
s
>
<
s
>Nam
<
lb
/>
Planetæ ſecundum Hypotheſin
<
emph
type
="
italics
"/>
Copernicæam
<
emph.end
type
="
italics
"/>
circa Solem delati re
<
lb
/>
volvuntur in Ellipſibus umbilicum habentibus in Sole, & radiis ad
<
lb
/>
Solem ductis areas deſcribunt temporibus proportionales. </
s
>
<
s
>At par
<
lb
/>
tes Vorticis tali motu revolvi nequeunt. </
s
>
<
s
>Deſignent
<
emph
type
="
italics
"/>
AD, BE, CF
<
emph.end
type
="
italics
"/>
,
<
lb
/>
Orbes tres circa Solem
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
deſcriptos, quorum extimus
<
emph
type
="
italics
"/>
CF
<
emph.end
type
="
italics
"/>
circulus
<
lb
/>
ſit Soli concentricus, & interiorum duorum Aphelia ſint
<
emph
type
="
italics
"/>
A, B
<
emph.end
type
="
italics
"/>
&
<
lb
/>
Perihelia
<
emph
type
="
italics
"/>
D, E.
<
emph.end
type
="
italics
"/>
Ergo corpus quod revolvitur in Orbe
<
emph
type
="
italics
"/>
CF,
<
emph.end
type
="
italics
"/>
radio
<
lb
/>
ad Solem ducto areas temporibus proportionales deſcribendo, mo
<
lb
/>
vebitur uniformi cum motu. </
s
>
<
s
>Corpus autem quod revolvitur in
<
lb
/>
Orbe
<
emph
type
="
italics
"/>
BE,
<
emph.end
type
="
italics
"/>
tardius movebitur in Aphelio
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
& velocius in Peri
<
lb
/>
helio
<
emph
type
="
italics
"/>
E,
<
emph.end
type
="
italics
"/>
ſecundum leges Aſtronomicas; cum tamen ſecundum le
<
lb
/>
ges Mechanicas materia Vorticis in ſpatio anguſtiore inter
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
& C</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>