Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
381
381
382
382
383
383
384
384
385
385
386
386
387
387
388
388
389
389
390
390
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/382.jpg" pagenum="354"/>
                    <arrow.to.target n="note362"/>
                  contra, ſi Vorticis pars congelata & ſolida ejuſdem ſit denſitatis
                    <lb/>
                  cum reliquo Vortice, & reſolvatur in fluidum; movebitur hæc ea­
                    <lb/>
                  dem lege ac prius, niſi quatenus ipſius particulæ jam fluidæ factæ
                    <lb/>
                  moveantur inter ſe. </s>
                  <s>Negligatur igitur motus particularum inter
                    <lb/>
                  ſe, tanquam ad totius motum progreſſivum nil ſpectans, & motus
                    <lb/>
                  totius idem erit ac prius. </s>
                  <s>Motus autem idem erit cum motu alia­
                    <lb/>
                  rum Vorticis partium a centro æqualiter diſtantium, propterea
                    <lb/>
                  quod ſolidum in Fluidum reſolutum fit pars Vorticis cæteris parti­
                    <lb/>
                  bus conſimilis. </s>
                  <s>Ergo ſolidum, ſi ſit ejuſdem denſitatis cum ma­
                    <lb/>
                  teria Vorticis, eodem motu cum ipſius partibus movebitur, in ma­
                    <lb/>
                  teria proxime ambiente relative quieſcens. </s>
                  <s>Sin denſius ſit, jam
                    <lb/>
                  magis conabitur recedere à centro Vorticis quam prius; adeoque
                    <lb/>
                  Vorticis vim illam, qua prius in Orbita ſua tanquam in æquilibrio
                    <lb/>
                  conſtitutum retinebatur, jam ſuperans, recedet a centro & revol­
                    <lb/>
                  vendo deſcribet Spiralem, non amplius in eundem Orbem rediens
                    <lb/>
                  Et eodem argumento ſi rarius ſit, accedet ad centrum. </s>
                  <s>Igitur non
                    <lb/>
                  redibit in eundem Orbem niſi ſit ejuſdem denſitatis cum fluido
                    <lb/>
                  Eo autem in caſu oſtenſum eſt, quod revolveretur eadem lege cum
                    <lb/>
                  partibus fluidi à centro Vorticis æqualiter diſtantibus.
                    <emph type="italics"/>
                  Q.E.D.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note362"/>
                  DE MOTU
                    <lb/>
                  CORPORUM</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corol.
                    <emph.end type="italics"/>
                  1. Ergo ſolidum quod in Vortice revolvitur & in eundem
                    <lb/>
                  Orbem ſemper redit, relative quieſcit in fluido cui innatat. </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corol.
                    <emph.end type="italics"/>
                  2. Et ſi Vortex ſit quoad denſitatem uniformis, corpus
                    <lb/>
                  idem ad quamlibet a centro Vorticis diſtantiam revolvi poteſt. </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                    <emph type="italics"/>
                  Scholium.
                    <emph.end type="italics"/>
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>Hinc liquet Planetas à Vorticibus corporeis non deferri. </s>
                  <s>Nam
                    <lb/>
                  Planetæ ſecundum Hypotheſin
                    <emph type="italics"/>
                  Copernicæam
                    <emph.end type="italics"/>
                  circa Solem delati re­
                    <lb/>
                  volvuntur in Ellipſibus umbilicum habentibus in Sole, & radiis ad
                    <lb/>
                  Solem ductis areas deſcribunt temporibus proportionales. </s>
                  <s>At par­
                    <lb/>
                  tes Vorticis tali motu revolvi nequeunt. </s>
                  <s>Deſignent
                    <emph type="italics"/>
                  AD, BE, CF
                    <emph.end type="italics"/>
                  ,
                    <lb/>
                  Orbes tres circa Solem
                    <emph type="italics"/>
                  S
                    <emph.end type="italics"/>
                  deſcriptos, quorum extimus
                    <emph type="italics"/>
                  CF
                    <emph.end type="italics"/>
                  circulus
                    <lb/>
                  ſit Soli concentricus, & interiorum duorum Aphelia ſint
                    <emph type="italics"/>
                  A, B
                    <emph.end type="italics"/>
                  &
                    <lb/>
                  Perihelia
                    <emph type="italics"/>
                  D, E.
                    <emph.end type="italics"/>
                  Ergo corpus quod revolvitur in Orbe
                    <emph type="italics"/>
                  CF,
                    <emph.end type="italics"/>
                  radio
                    <lb/>
                  ad Solem ducto areas temporibus proportionales deſcribendo, mo­
                    <lb/>
                  vebitur uniformi cum motu. </s>
                  <s>Corpus autem quod revolvitur in
                    <lb/>
                  Orbe
                    <emph type="italics"/>
                  BE,
                    <emph.end type="italics"/>
                  tardius movebitur in Aphelio
                    <emph type="italics"/>
                  B
                    <emph.end type="italics"/>
                  & velocius in Peri­
                    <lb/>
                  helio
                    <emph type="italics"/>
                  E,
                    <emph.end type="italics"/>
                  ſecundum leges Aſtronomicas; cum tamen ſecundum le­
                    <lb/>
                  ges Mechanicas materia Vorticis in ſpatio anguſtiore inter
                    <emph type="italics"/>
                  A
                    <emph.end type="italics"/>
                  & C</s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>