Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
381
(361)
382
(362)
383
(363)
384
(364)
385
(365)
386
(366)
387
(367)
388
(368)
389
(369)
390
(370)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(365)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div890
"
type
="
section
"
level
="
1
"
n
="
533
">
<
pb
o
="
365
"
file
="
0385
"
n
="
385
"/>
</
div
>
<
div
xml:id
="
echoid-div891
"
type
="
section
"
level
="
1
"
n
="
534
">
<
head
xml:id
="
echoid-head554
"
xml:space
="
preserve
">GEOMETRIÆ</
head
>
<
head
xml:id
="
echoid-head555
"
xml:space
="
preserve
">CAVALERII.</
head
>
<
head
xml:id
="
echoid-head556
"
xml:space
="
preserve
">LIBER QVINTVS.</
head
>
<
head
xml:id
="
echoid-head557
"
style
="
it
"
xml:space
="
preserve
">In quo de Hyperbola, Oppoſitis Sectionib us,
<
lb
/>
ac ſolidis ab eiſdem genitis, babetur
<
lb
/>
contemplatio.</
head
>
<
head
xml:id
="
echoid-head558
"
xml:space
="
preserve
">THEOREMA I. PROPOS. I.</
head
>
<
p
>
<
s
xml:id
="
echoid-s9235
"
xml:space
="
preserve
">OMNIA quadrata Hyperbol@, regu-
<
lb
/>
la ſumpta baſi ſcilicet vna ex ordi-
<
lb
/>
natim applicatis ad axim, vel diame-
<
lb
/>
trum eiuſdem, ad omnia quadrata
<
lb
/>
parallelogrammi in eadem baſi, & </
s
>
<
s
xml:id
="
echoid-s9236
"
xml:space
="
preserve
">
<
lb
/>
altitudine cum ipſa, erunt vt linea
<
lb
/>
compoſita ex dimidia tranſuerſi la-
<
lb
/>
teris hyperbolæ, & </
s
>
<
s
xml:id
="
echoid-s9237
"
xml:space
="
preserve
">diametri, vel
<
lb
/>
axis eiuſdem, ad compoſita n ex tranſucrſo latere, & </
s
>
<
s
xml:id
="
echoid-s9238
"
xml:space
="
preserve
">axi,
<
lb
/>
vel dia netro eiuſdem: </
s
>
<
s
xml:id
="
echoid-s9239
"
xml:space
="
preserve
">Eade n verò ad omnia quadrata
<
lb
/>
trianguli in eadem baſi, & </
s
>
<
s
xml:id
="
echoid-s9240
"
xml:space
="
preserve
">altitudine cum ipſa erunt, vt cõ-
<
lb
/>
poſit@ ex ſexquialtera tranſuerſi lateris, & </
s
>
<
s
xml:id
="
echoid-s9241
"
xml:space
="
preserve
">axi, vel diame-
<
lb
/>
tro eiuſdem, ad compoſitam ex tranſuerſo latere, & </
s
>
<
s
xml:id
="
echoid-s9242
"
xml:space
="
preserve
">axi,
<
lb
/>
vel diametro eiuſdem.</
s
>
<
s
xml:id
="
echoid-s9243
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>