Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
381
382
383
384
385
386
387
388
389
390
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/387.jpg
"
pagenum
="
359
"/>
</
subchap2
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PHÆNOMENA.
<
emph.end
type
="
center
"/>
<
lb
/>
<
arrow.to.target
n
="
note365
"/>
<
gap
desc
="
hr tag
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note365
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PHÆNOMENON I.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Planetas Circumjoviales, radiis ad centrum Jovis ductis, areas
<
lb
/>
deſcribere temporibus proportionales, eorumque tempora periodica
<
lb
/>
eſſe in ratione ſeſquiplicata diſtantiarum ab ipſius centro.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>COnſtat ex obſervationibus Aſtronomicis. </
s
>
<
s
>Orbes horum Pla
<
lb
/>
netarum non differunt ſenſibiliter a circulis Jovi concentri
<
lb
/>
cis, & motus eorum in his circulis uniformes deprehenduntur. </
s
>
<
s
>
<
lb
/>
Tempora vero periodica eſſe in ſeſquiplicata ratione ſemidiame
<
lb
/>
trorum Orbium conſentiunt Aſtronomi; & idem ex Tabula ſe
<
lb
/>
quente manifeſtum eſt.
<
lb
/>
<
emph
type
="
italics
"/>
Satellitum Jovialium tempora periodica.
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
table5
"/>
<
arrow.to.target
n
="
table6
"/>
</
s
>
</
p
>
<
table
>
<
table.target
id
="
table5
"/>
<
row
>
<
cell
>1
<
emph
type
="
sup
"/>
d
<
emph.end
type
="
sup
"/>
.18
<
emph
type
="
sup
"/>
h
<
emph.end
type
="
sup
"/>
.27′.34″.</
cell
>
<
cell
>3
<
emph
type
="
sup
"/>
d
<
emph.end
type
="
sup
"/>
.13
<
emph
type
="
sup
"/>
h
<
emph.end
type
="
sup
"/>
.13′.42″.</
cell
>
<
cell
>7
<
emph
type
="
sup
"/>
d
<
emph.end
type
="
sup
"/>
.3
<
emph
type
="
sup
"/>
h
<
emph.end
type
="
sup
"/>
.42′.36″.</
cell
>
<
cell
>16
<
emph
type
="
sup
"/>
d
<
emph.end
type
="
sup
"/>
.16
<
emph
type
="
sup
"/>
h
<
emph.end
type
="
sup
"/>
.32′.9″.</
cell
>
</
row
>
</
table
>
<
table
>
<
row
>
<
cell
>
<
emph
type
="
italics
"/>
Diſtantiæ Satellitum a centro Jovis.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
cell
>
</
row
>
<
row
>
<
cell
>
<
emph
type
="
italics
"/>
Ex obſervationibus
<
emph.end
type
="
italics
"/>
</
cell
>
<
cell
>1</
cell
>
<
cell
>2</
cell
>
<
cell
>3</
cell
>
<
cell
>4</
cell
>
<
cell
/>
</
row
>
<
row
>
<
cell
>Borelli</
cell
>
<
cell
>5 2/3</
cell
>
<
cell
>8 2/3</
cell
>
<
cell
>14</
cell
>
<
cell
>24 2/3</
cell
>
<
cell
>Semidiam.
<
lb
/>
Jovis</
cell
>
</
row
>
<
row
>
<
cell
>Townlei
<
emph
type
="
italics
"/>
per Microm.
<
emph.end
type
="
italics
"/>
</
cell
>
<
cell
>5,52</
cell
>
<
cell
>8,78</
cell
>
<
cell
>13,47</
cell
>
<
cell
>24,72</
cell
>
</
row
>
<
row
>
<
cell
>Caſſini
<
emph
type
="
italics
"/>
per Teleſcop.
<
emph.end
type
="
italics
"/>
</
cell
>
<
cell
>5</
cell
>
<
cell
>8</
cell
>
<
cell
>13</
cell
>
<
cell
>23</
cell
>
</
row
>
<
row
>
<
cell
>Caſſini
<
emph
type
="
italics
"/>
per Eclipſ. Satell.
<
emph.end
type
="
italics
"/>
</
cell
>
<
cell
>5 2/3</
cell
>
<
cell
>9</
cell
>
<
cell
>(14 23/60)</
cell
>
<
cell
>(25 1/10)</
cell
>
</
row
>
<
row
>
<
cell
>
<
emph
type
="
italics
"/>
Ex temporibus periodicis.
<
emph.end
type
="
italics
"/>
</
cell
>
<
cell
>5,667</
cell
>
<
cell
>9,017</
cell
>
<
cell
>14,384</
cell
>
<
cell
>25,299</
cell
>
</
row
>
</
table
>
<
table
>
<
table.target
id
="
table6
"/>
<
row
>
<
cell
>
<
emph
type
="
italics
"/>
Satellitum Jovialium tempora periodica.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
cell
>
</
row
>
</
table
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PHÆNOMENON II.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Planetas Circumſaturnios, radiis ad Saturnum ductis, areas deſcri
<
lb
/>
bere temporibus proportionales, & eorum tempora periodica
<
lb
/>
eſſe in ratione ſeſquiplicata diſtantiarum ab ipſius centro.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Caſſinus
<
emph.end
type
="
italics
"/>
utique ex obſervationibus ſuis diſtantias eorum a centro
<
lb
/>
Saturni & periodica tempora hujuſmodi eſſe ſtatuit. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>