Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
381
382
383
384
385
386
387
388
389
390
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/388.jpg
"
pagenum
="
360
"/>
<
arrow.to.target
n
="
note366
"/>
<
arrow.to.target
n
="
table7
"/>
<
arrow.to.target
n
="
table8
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note366
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
table
>
<
table.target
id
="
table7
"/>
<
row
>
<
cell
>
<
emph
type
="
italics
"/>
Satellitum Saturniorum tempora periodica.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
cell
>
</
row
>
<
row
>
<
cell
>1
<
emph
type
="
sup
"/>
d
<
emph.end
type
="
sup
"/>
.21
<
emph
type
="
sup
"/>
<
emph.end
type
="
sup
"/>
.19′.</
cell
>
<
cell
>2
<
emph
type
="
sup
"/>
d
<
emph.end
type
="
sup
"/>
.17
<
emph
type
="
sup
"/>
h
<
emph.end
type
="
sup
"/>
.41′.</
cell
>
<
cell
>4
<
emph
type
="
sup
"/>
d
<
emph.end
type
="
sup
"/>
.13
<
emph
type
="
sup
"/>
h
<
emph.end
type
="
sup
"/>
.47′.</
cell
>
<
cell
>15
<
emph
type
="
sup
"/>
d
<
emph.end
type
="
sup
"/>
.22
<
emph
type
="
sup
"/>
h
<
emph.end
type
="
sup
"/>
.41′.</
cell
>
<
cell
>79
<
emph
type
="
sup
"/>
d
<
emph.end
type
="
sup
"/>
.22
<
emph
type
="
sup
"/>
h
<
emph.end
type
="
sup
"/>
.4′.</
cell
>
</
row
>
<
row
>
<
cell
>
<
emph
type
="
italics
"/>
Diſtantiæ Satellitum a centro Saturni in ſemidiametris Annuli
<
emph.end
type
="
italics
"/>
</
cell
>
</
row
>
<
row
>
<
cell
>
<
emph
type
="
italics
"/>
Ex obſervationibus
<
emph.end
type
="
italics
"/>
</
cell
>
<
cell
>(1 19/20).</
cell
>
<
cell
>2 1/2.</
cell
>
<
cell
>3 1/2.</
cell
>
<
cell
>8.</
cell
>
<
cell
>24.</
cell
>
</
row
>
<
row
>
<
cell
>
<
emph
type
="
italics
"/>
Ex temporibus periodicis
<
emph.end
type
="
italics
"/>
</
cell
>
<
cell
>1,95.</
cell
>
<
cell
>2,5.</
cell
>
<
cell
>3,52,</
cell
>
<
cell
>8,09.</
cell
>
<
cell
>23,71.</
cell
>
</
row
>
</
table
>
<
p
>
<
s
>PHÆNOMENON III.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Planetas quinque primarios Mercurium, Venerem, Martem, Jo
<
lb
/>
vem & Saturnum Orbibus ſuis Solem cingere.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Mercurium & Venerem circa Solem revolvi ex eorum phaſibus
<
lb
/>
lunaribus demonſtratur. </
s
>
<
s
>Plena facie lucentes ultra Solem ſiti ſunt,
<
lb
/>
dimidiata è regione Solis, falcata cis Solem; per diſcum ejus ad
<
lb
/>
modum macularum nonnunquam tranſeuntes. </
s
>
<
s
>Ex Martis quoque
<
lb
/>
plena facie prope Solis conjunctionem, & gibboſa in quadraturis,
<
lb
/>
certum eſt quod is Solem ambit. </
s
>
<
s
>De Jove etiam & Saturno idem
<
lb
/>
ex eorum phaſibus ſemper plenis demonſtratur.
<
lb
/>
PHÆNOMENON IV.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Planetarum quinque primariorum, & (vel Solis circa Terram vel)
<
lb
/>
Terræ circa Solem tempora periodica eſſe in ratione ſeſquipli
<
lb
/>
cata mediocrium diſtantiarum à Sole.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Hæc à
<
emph
type
="
italics
"/>
Keplero
<
emph.end
type
="
italics
"/>
inventa ratio in confeſſo eſt apud omnes. </
s
>
<
s
>Ea
<
lb
/>
dem utique ſunt tempora periodica, eædemque orbium dimen
<
lb
/>
ſiones, ſive Sol circa Terram, ſive Terra circa Solem revolvatur.
<
lb
/>
Ac de menſura quidem temporum periodieorum convenit inter
<
lb
/>
Aſtronomos univerſos. </
s
>
<
s
>Magnitudines autem Orbium
<
emph
type
="
italics
"/>
Keplerus
<
emph.end
type
="
italics
"/>
&
<
lb
/>
<
emph
type
="
italics
"/>
Bullialdus
<
emph.end
type
="
italics
"/>
omnium diligentiſſime ex Obſervationibus determina
<
lb
/>
verunt: & diſtantiæ mediocres, quæ temporibus periodicis reſpon
<
lb
/>
dent, non differunt ſenſibiliter à diſtantiis quas illi invenerunt,
<
lb
/>
ſuntQ.E.I.ter ipſas ut plurimum intermediæ; uti in Tabula ſe
<
lb
/>
quente videre licet.
<
lb
/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>