Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
381
(361)
382
(362)
383
(363)
384
(364)
385
(365)
386
(366)
387
(367)
388
(368)
389
(369)
390
(370)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(368)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div893
"
type
="
section
"
level
="
1
"
n
="
535
">
<
p
>
<
s
xml:id
="
echoid-s9313
"
xml:space
="
preserve
">
<
pb
o
="
368
"
file
="
0388
"
n
="
388
"
rhead
="
GEOMETRIÆ
"/>
drata, AF, ſunt vt compoſita ex {1/2}. </
s
>
<
s
xml:id
="
echoid-s9314
"
xml:space
="
preserve
">ON. </
s
>
<
s
xml:id
="
echoid-s9315
"
xml:space
="
preserve
">.</
s
>
<
s
xml:id
="
echoid-s9316
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9317
"
xml:space
="
preserve
">ex, BN, & </
s
>
<
s
xml:id
="
echoid-s9318
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s9319
"
xml:space
="
preserve
">NE, ad,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0388-01
"
xlink:href
="
note-0388-01a
"
xml:space
="
preserve
">11. l. 1.</
note
>
OE, vel vt iſtorum tripla .</
s
>
<
s
xml:id
="
echoid-s9320
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s9321
"
xml:space
="
preserve
">vt, XE, ad trip lam, OE. </
s
>
<
s
xml:id
="
echoid-s9322
"
xml:space
="
preserve
">Inſuper omnia
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0388-02
"
xlink:href
="
note-0388-02a
"
xml:space
="
preserve
">Corol. 39.
<
lb
/>
& Sch. 40.
<
lb
/>
l. 1.</
note
>
quadrata, AF, ad omnia quadrata, CG, habent rationem compoſitã
<
lb
/>
<
figure
xlink:label
="
fig-0388-01
"
xlink:href
="
fig-0388-01a
"
number
="
265
">
<
image
file
="
0388-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0388-01
"/>
</
figure
>
ex ea, quã habet quadratu, DF, ad quadratũ,
<
lb
/>
HG, ideſt rectangulum, OEN, ad rectagulũ,
<
lb
/>
OMN, .</
s
>
<
s
xml:id
="
echoid-s9323
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9324
"
xml:space
="
preserve
">horũ tripla, .</
s
>
<
s
xml:id
="
echoid-s9325
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s9326
"
xml:space
="
preserve
">rectangulum ſubtri-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0388-03
"
xlink:href
="
note-0388-03a
"
xml:space
="
preserve
">EX antec.</
note
>
pla, OE, &</
s
>
<
s
xml:id
="
echoid-s9327
"
xml:space
="
preserve
">, EN, ſola, ad rectã gulũ ſub tripla,
<
lb
/>
OM, & </
s
>
<
s
xml:id
="
echoid-s9328
"
xml:space
="
preserve
">ſola, MN, & </
s
>
<
s
xml:id
="
echoid-s9329
"
xml:space
="
preserve
">ex rñe, EN, ad, NM; </
s
>
<
s
xml:id
="
echoid-s9330
"
xml:space
="
preserve
">tã-
<
lb
/>
dem omnia quadrata, CG, ad omnia quadra-
<
lb
/>
ta hyperbolæ, HNG, ſunt vt, OM, ad cõpo-
<
lb
/>
ſitam ex, BN, & </
s
>
<
s
xml:id
="
echoid-s9331
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s9332
"
xml:space
="
preserve
">NM, .</
s
>
<
s
xml:id
="
echoid-s9333
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9334
"
xml:space
="
preserve
">vt tripla, OM,
<
lb
/>
ad, MX, ideſt ſumpta, MN, communi alti-
<
lb
/>
tudine, vt rectangulũ ſub tripla, OM, & </
s
>
<
s
xml:id
="
echoid-s9335
"
xml:space
="
preserve
">ſub,
<
lb
/>
MN, ad rectãgulũ ſub, XM, MN, ergo omnia
<
lb
/>
quadrata hyperbolæ, DNF, ad omnia qua-
<
lb
/>
drata hyperbolæ, HNG, habent rationem
<
lb
/>
compoſitam ex ea, quam habet, XE, ad tri-
<
lb
/>
plam, EO, .</
s
>
<
s
xml:id
="
echoid-s9336
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9337
"
xml:space
="
preserve
">ſumpta, EN, communi altitudine, ex ea, quam ha-
<
lb
/>
bet rectangulum, XEN, ad rectangulum ſub, NE, & </
s
>
<
s
xml:id
="
echoid-s9338
"
xml:space
="
preserve
">tripla, EO, & </
s
>
<
s
xml:id
="
echoid-s9339
"
xml:space
="
preserve
">
<
lb
/>
ex ea, quam habet rectangulum ſub tripla; </
s
>
<
s
xml:id
="
echoid-s9340
"
xml:space
="
preserve
">OE, & </
s
>
<
s
xml:id
="
echoid-s9341
"
xml:space
="
preserve
">ſub, EN, ad re-
<
lb
/>
ctangulum ſub tripla, OM, & </
s
>
<
s
xml:id
="
echoid-s9342
"
xml:space
="
preserve
">ſub, MN, & </
s
>
<
s
xml:id
="
echoid-s9343
"
xml:space
="
preserve
">rectangulum ſub tripla,
<
lb
/>
OM, & </
s
>
<
s
xml:id
="
echoid-s9344
"
xml:space
="
preserve
">ſub, MN, ad rectangulum ſub, MN, & </
s
>
<
s
xml:id
="
echoid-s9345
"
xml:space
="
preserve
">MX, & </
s
>
<
s
xml:id
="
echoid-s9346
"
xml:space
="
preserve
">tandem ex
<
lb
/>
ea, quam habet, EN, ad, NM; </
s
>
<
s
xml:id
="
echoid-s9347
"
xml:space
="
preserve
">porrò iſtæ rationes .</
s
>
<
s
xml:id
="
echoid-s9348
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s9349
"
xml:space
="
preserve
">quam habet
<
lb
/>
rectangulum ſub, XE, &</
s
>
<
s
xml:id
="
echoid-s9350
"
xml:space
="
preserve
">, EN, ad rectangulum ſub tripla, OE, &</
s
>
<
s
xml:id
="
echoid-s9351
"
xml:space
="
preserve
">,
<
lb
/>
EN, item quam habet rectangulum ſub tripla, OE, &</
s
>
<
s
xml:id
="
echoid-s9352
"
xml:space
="
preserve
">, EN, ad re-
<
lb
/>
ctangulum ſub tripla, OM, & </
s
>
<
s
xml:id
="
echoid-s9353
"
xml:space
="
preserve
">MN, & </
s
>
<
s
xml:id
="
echoid-s9354
"
xml:space
="
preserve
">quam habet rectangulum
<
lb
/>
ſubtripla, OM, &</
s
>
<
s
xml:id
="
echoid-s9355
"
xml:space
="
preserve
">, MN, ad rectangulum, XMN, conficiunt ratio-
<
lb
/>
nem rectanguli, XEN, ad rectangulum, XMN, quæ ſimul cum ra-
<
lb
/>
tione: </
s
>
<
s
xml:id
="
echoid-s9356
"
xml:space
="
preserve
">quam habet, EN, ad, NM, conficit rationem parallelepipe-
<
lb
/>
di ſub, NE, & </
s
>
<
s
xml:id
="
echoid-s9357
"
xml:space
="
preserve
">rectangulo, NEX, .</
s
>
<
s
xml:id
="
echoid-s9358
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9359
"
xml:space
="
preserve
">ſub, XE, & </
s
>
<
s
xml:id
="
echoid-s9360
"
xml:space
="
preserve
">quadrato, EN, ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0388-04
"
xlink:href
="
note-0388-04a
"
xml:space
="
preserve
">36. l. 2.</
note
>
parallelepipedum ſub, NM, & </
s
>
<
s
xml:id
="
echoid-s9361
"
xml:space
="
preserve
">rectangu o, NMX, .</
s
>
<
s
xml:id
="
echoid-s9362
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9363
"
xml:space
="
preserve
">ſub, XM & </
s
>
<
s
xml:id
="
echoid-s9364
"
xml:space
="
preserve
">
<
lb
/>
quadrato, MN, ergo omnia quadrata hyperbolæ, DNF, ad omnia
<
lb
/>
quadrata hyperbolæ, HNG, erunt vt parallelepipedum ſub, XE,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s9365
"
xml:space
="
preserve
">quadrato, EN, ad parallelepipedum ſub, XM, & </
s
>
<
s
xml:id
="
echoid-s9366
"
xml:space
="
preserve
">quadrato, M
<
lb
/>
N, quod oſtendere oportebat.</
s
>
<
s
xml:id
="
echoid-s9367
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div895
"
type
="
section
"
level
="
1
"
n
="
536
">
<
head
xml:id
="
echoid-head560
"
xml:space
="
preserve
">THEOREMA III. PROPOS. III.</
head
>
<
p
>
<
s
xml:id
="
echoid-s9368
"
xml:space
="
preserve
">IN eadem antecedentis figura, ſi producatur, HG, hinc
<
lb
/>
inde vſque ad curuam hyperbolicam, cui incidat </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>