Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
391
392
393
394
395
396
397
398
399
400
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/395.jpg
"
pagenum
="
367
"/>
<
lb
/>
titate materiæ ſuæ, quam Jupiter pro quantitate materiæ ſuæ, in
<
lb
/>
<
arrow.to.target
n
="
note373
"/>
ratione quacunQ.E.D.ta, puta
<
emph
type
="
italics
"/>
d
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
e
<
emph.end
type
="
italics
"/>
: diſtantia inter centrum So
<
lb
/>
lis & centrum Orbis Satellitis, major ſemper foret quam diſtantia
<
lb
/>
inter centrum Solis & centrum Jovis in ratione ſubduplicata quam
<
lb
/>
proxime; uti calculis quibuſdam initis inveni. </
s
>
<
s
>Et ſi Satelles mi
<
lb
/>
nus gravis eſſet in Solem in ratione illa
<
emph
type
="
italics
"/>
d
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
e,
<
emph.end
type
="
italics
"/>
diſtantia centri
<
lb
/>
Orbis Satellitis à Sole minor foret quam diſtantia centri Jovis à
<
lb
/>
Sole in ratione illa ſubduplicata. </
s
>
<
s
>Igitur ſi in æqualibus à Sole
<
lb
/>
diſtantiis, gravitas acceleratrix Satellitis cujuſvis in Solem major
<
lb
/>
eſſet vel minor quam gravitas acceleratrix Jovis in Solem, parte
<
lb
/>
tantum milleſima gravitatis totius, foret diſtantia centri Orbis
<
lb
/>
Satellitis à Sole major vel minor quam diſtantia Jovis à Sole
<
lb
/>
parte (7/2000) diſtantiæ totius, id eſt, parte quinta diſtantiæ Satellitis
<
lb
/>
extimi à centro Jovis: Quæ quidem Orbis eccentricitas foret &c. valde
<
lb
/>
ſenſibilis. </
s
>
<
s
>Sed Orbes Satellitum ſunt Jovi concentrici, & propte
<
lb
/>
rea gravitates acceleratrices Jovis & Satellitum in Solem æquantur
<
lb
/>
inter ſe. </
s
>
<
s
>Et eodem argumento pondera Saturni & Comitum ejus
<
lb
/>
in Solem, in æqualibus à Sole diſtantiis, ſunt ut quantitates mate
<
lb
/>
riæ in ipſis: Et pondera Lunæ ac Terræ in Solem vel nulla ſunt,
<
lb
/>
vel earum maſſis accurate proportionalia. </
s
>
<
s
>Aliqua autem ſunt per
<
lb
/>
Corol. 1. & 3. Prop. V.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note372
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note373
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Quinetiam pondera partium ſingularum Planetæ cujuſQ.E.I.
<
lb
/>
alium quemcunque, ſunt inter ſe ut materia in partibus ſingulis.
<
lb
/>
Nam ſi partes aliquæ plus gravitarent, aliæ minus, quam pro quan
<
lb
/>
titate materiæ: Planeta totus, pro genere partium quibus maxime
<
lb
/>
abundet, gravitaret magis vel minus quam pro quantitate materiæ
<
lb
/>
totius. </
s
>
<
s
>Sed nec refert utrum partes illæ externæ ſint vel internæ.
<
lb
/>
Nam ſi verbi gratia corpora Terreſtria, quæ apud nos ſunt, in
<
lb
/>
Orbem Lunæ elevari fingantur, & conferantur cum corporo Lunæ:
<
lb
/>
Si horum pondera eſſent ad pondera partium externarum Lunæ
<
lb
/>
ut quantitates materiæ in iiſdem, ad pondera vero partium in
<
lb
/>
ternarum in majori vel minori ratione, forent eadem ad pondus
<
lb
/>
Lunæ totius in majori vel minori ratione: contra quam ſupra
<
lb
/>
oſtenſum eſt.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Hinc pondera corporum non pendent ab eorum for
<
lb
/>
mis & texturis. </
s
>
<
s
>Nam ſi cum formis variari poſſent; forent ma
<
lb
/>
jora vel minora, pro varietate formarum, in æquali materia: om
<
lb
/>
nino contra Experientiam.
<
lb
/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>