Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
391
(371)
392
(372)
393
(373)
394
(374)
395
(375)
396
(376)
397
(377)
398
(378)
399
(379)
400
(380)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(375)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div904
"
type
="
section
"
level
="
1
"
n
="
540
">
<
p
>
<
s
xml:id
="
echoid-s9646
"
xml:space
="
preserve
">
<
pb
o
="
375
"
file
="
0395
"
n
="
395
"
rhead
="
LIBER V.
"/>
ptoti datæ hyperbolæ. </
s
>
<
s
xml:id
="
echoid-s9647
"
xml:space
="
preserve
">Dico igitur omnia quadrata hyperbolę,
<
lb
/>
SOX, ad omnia quadrata trianguli, HCR, habere rationem com-
<
lb
/>
<
figure
xlink:label
="
fig-0395-01
"
xlink:href
="
fig-0395-01a
"
number
="
270
">
<
image
file
="
0395-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0395-01
"/>
</
figure
>
poſitam ex ea, quam habet quadratum,
<
lb
/>
SX, ad quadratum, HR, & </
s
>
<
s
xml:id
="
echoid-s9648
"
xml:space
="
preserve
">rectangulũ,
<
lb
/>
AVO, ad rectangulum, BVC, inngan-
<
lb
/>
tur, OS, OX: </
s
>
<
s
xml:id
="
echoid-s9649
"
xml:space
="
preserve
">Omnia ergo quadrata hy-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0395-01
"
xlink:href
="
note-0395-01a
"
xml:space
="
preserve
">Defin .12.
<
lb
/>
l. 1.
<
lb
/>
1. huius.
<
lb
/>
D. Cor.
<
lb
/>
22. l. 2.</
note
>
perbolæ, SOX, ad omnia quadrata triã-
<
lb
/>
guli, HCR, habent rationem compoſi-
<
lb
/>
tam ex ea, quam habent omnia quadra-
<
lb
/>
ta hyperbolæ, SOX, ad omnia quadra-
<
lb
/>
ta trianguli, SOX, .</
s
>
<
s
xml:id
="
echoid-s9650
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9651
"
xml:space
="
preserve
">ex ea, quam Habet,
<
lb
/>
AV, ad, VB, & </
s
>
<
s
xml:id
="
echoid-s9652
"
xml:space
="
preserve
">ex ea, quam habent om-
<
lb
/>
nia quadrata trianguli, SOX, ad omnia
<
lb
/>
quadrata trianguli, HCR, quæ eſt com-
<
lb
/>
poſita ex ea, quam habet quadratum, S
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0395-02
"
xlink:href
="
note-0395-02a
"
xml:space
="
preserve
">6 ſec.</
note
>
X, ad quadratum, HR, & </
s
>
<
s
xml:id
="
echoid-s9653
"
xml:space
="
preserve
">ex ea, quam
<
lb
/>
habet, OV, ad, VC, habemus ergo has tres rationes componen-
<
lb
/>
tes rationem, quam habent omnia quadrata hyperbolæ, SOX, ad
<
lb
/>
omnia quadrata trianguli, HCR, ſcilicet eam, quam habet qua-
<
lb
/>
dratum, SX, ad quadratum, HR, & </
s
>
<
s
xml:id
="
echoid-s9654
"
xml:space
="
preserve
">quam habet, AV, ad, VB, & </
s
>
<
s
xml:id
="
echoid-s9655
"
xml:space
="
preserve
">
<
lb
/>
tandem, quam habet, OV, ad, VC, harum autem iſtæ duæ .</
s
>
<
s
xml:id
="
echoid-s9656
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s9657
"
xml:space
="
preserve
">quã
<
lb
/>
habet, AV, ad, VB, &</
s
>
<
s
xml:id
="
echoid-s9658
"
xml:space
="
preserve
">, OV, ad; </
s
>
<
s
xml:id
="
echoid-s9659
"
xml:space
="
preserve
">VC, componunt rationem rectã-
<
lb
/>
guli, AVO, ad rectangulum, BVC, ergo omnia quadrata hyper-
<
lb
/>
bolæ, SOX, ad omnia quadrata trianguli, HCR, habent rationẽ
<
lb
/>
compoſitam ex ea, quam habet quadratum, SX, ad quadratum,
<
lb
/>
HR, & </
s
>
<
s
xml:id
="
echoid-s9660
"
xml:space
="
preserve
">rectangulum, AVO, ad rectangulum, BVC, quod oſten-
<
lb
/>
dere opus erat.</
s
>
<
s
xml:id
="
echoid-s9661
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div906
"
type
="
section
"
level
="
1
"
n
="
541
">
<
head
xml:id
="
echoid-head565
"
xml:space
="
preserve
">THEOREMA VII. PROPOS. VIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s9662
"
xml:space
="
preserve
">IN eadem anteced. </
s
>
<
s
xml:id
="
echoid-s9663
"
xml:space
="
preserve
">figura, regula eadem, retenta, oſten-
<
lb
/>
demus (ducta intra hyperbolam, SOX ipſa, IY, occur-
<
lb
/>
rente aſymptotis, CH, CR, in, T, P,) omnia quadrata tra-
<
lb
/>
pezij, THRP, ad omnia quadrata fruſti hyperbolæ, ISXY,
<
lb
/>
eſſe in ratione compoſita ex ea, quam habet rectangulum
<
lb
/>
ſub, GP, VR, cum .</
s
>
<
s
xml:id
="
echoid-s9664
"
xml:space
="
preserve
">quadrati, PM, ad quadratum, VX, & </
s
>
<
s
xml:id
="
echoid-s9665
"
xml:space
="
preserve
">
<
lb
/>
ex ea, quam habet rectangulum, BVO, ad rectangulum
<
lb
/>
ſub, BV, OG, vna cum rectangulo ſub compoſita ex .</
s
>
<
s
xml:id
="
echoid-s9666
"
xml:space
="
preserve
">BO,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s9667
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s9668
"
xml:space
="
preserve
">GV, & </
s
>
<
s
xml:id
="
echoid-s9669
"
xml:space
="
preserve
">ſub, GV.</
s
>
<
s
xml:id
="
echoid-s9670
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>