Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
391
(371)
392
(372)
393
(373)
394
(374)
395
(375)
396
(376)
397
(377)
398
(378)
399
(379)
400
(380)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(376)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div906
"
type
="
section
"
level
="
1
"
n
="
541
">
<
pb
o
="
376
"
file
="
0396
"
n
="
396
"
rhead
="
GEOMETRIÆ
"/>
<
p
>
<
s
xml:id
="
echoid-s9671
"
xml:space
="
preserve
">Ducantur per puncta, X, R, XN, RM, rectæ lineæ parallelæ
<
lb
/>
axi, vel diametro hyperbolæ, OV, occurrentes, TP, productæ, in,
<
lb
/>
N, M: </
s
>
<
s
xml:id
="
echoid-s9672
"
xml:space
="
preserve
">Omnia ergo quadr. </
s
>
<
s
xml:id
="
echoid-s9673
"
xml:space
="
preserve
">trapezij, GPRV, ad omnia quadrata
<
lb
/>
quadlilinei, GVXY, habent rationem compoſitam ex ea, quam
<
lb
/>
habent omnia quadrata trapezij, PGVR, ad omnia quadrata,
<
lb
/>
GR, .</
s
>
<
s
xml:id
="
echoid-s9674
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9675
"
xml:space
="
preserve
">ex ea, quam habet rectangulum ſub, PG, VR, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s9676
"
xml:space
="
preserve
">qua-
<
lb
/>
drati, PM, ad quadratum, VR, & </
s
>
<
s
xml:id
="
echoid-s9677
"
xml:space
="
preserve
">ex ea, quam habent omnia qua-
<
lb
/>
drata, GR, ad omnia quadrata, GX, ideſt ex ea, quam habet qua-
<
lb
/>
dratum, RV, ad quadratum, VX; </
s
>
<
s
xml:id
="
echoid-s9678
"
xml:space
="
preserve
">quæ duæ rationes componunt
<
lb
/>
<
figure
xlink:label
="
fig-0396-01
"
xlink:href
="
fig-0396-01a
"
number
="
271
">
<
image
file
="
0396-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0396-01
"/>
</
figure
>
rationem, quam habet rectangulum ſub,
<
lb
/>
GP, VR, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s9679
"
xml:space
="
preserve
">quadrati, PM, ad qua
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0396-01
"
xlink:href
="
note-0396-01a
"
xml:space
="
preserve
">28.2.</
note
>
dratum, VX; </
s
>
<
s
xml:id
="
echoid-s9680
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s9681
"
xml:space
="
preserve
">tandem ex ea, quam ha-
<
lb
/>
bent omnia quadrata, GX, ad omnia
<
lb
/>
quadrata, GYXV, .</
s
>
<
s
xml:id
="
echoid-s9682
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9683
"
xml:space
="
preserve
">ex ea, quam habet
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0396-02
"
xlink:href
="
note-0396-02a
"
xml:space
="
preserve
">9 2.</
note
>
rectangulum, BVO, ad rectangulum ſub,
<
lb
/>
BV, GO, vna cum rectangulo ſub com-
<
lb
/>
poſita ex {1/2}. </
s
>
<
s
xml:id
="
echoid-s9684
"
xml:space
="
preserve
">BO, & </
s
>
<
s
xml:id
="
echoid-s9685
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s9686
"
xml:space
="
preserve
">GV, & </
s
>
<
s
xml:id
="
echoid-s9687
"
xml:space
="
preserve
">ſub, GV,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0396-03
"
xlink:href
="
note-0396-03a
"
xml:space
="
preserve
">6.2.</
note
>
ergo omnia quadrata trapezij, PGVR,
<
lb
/>
ad omnia quadrata quadrilinei, YGVX,
<
lb
/>
vel eorum quadrupla .</
s
>
<
s
xml:id
="
echoid-s9688
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9689
"
xml:space
="
preserve
">omnia quadrata
<
lb
/>
trapezij, THRP, ad omnia quadrata fru-
<
lb
/>
ſti, ISXY, habebunt rationem compoſi
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0396-04
"
xlink:href
="
note-0396-04a
"
xml:space
="
preserve
">3. huius.</
note
>
tam ex ea; </
s
>
<
s
xml:id
="
echoid-s9690
"
xml:space
="
preserve
">quam habet rectangulum ſub,
<
lb
/>
GP, VR, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s9691
"
xml:space
="
preserve
">quadrati, PM, ad quadratum, VX, & </
s
>
<
s
xml:id
="
echoid-s9692
"
xml:space
="
preserve
">ex ea, quã
<
lb
/>
habet rectangulum, BVO, ad rectangulum ſub, BV, GO, vna cum
<
lb
/>
rectangulo ſub compoſita ex {1/2}. </
s
>
<
s
xml:id
="
echoid-s9693
"
xml:space
="
preserve
">BO, & </
s
>
<
s
xml:id
="
echoid-s9694
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s9695
"
xml:space
="
preserve
">GV, & </
s
>
<
s
xml:id
="
echoid-s9696
"
xml:space
="
preserve
">ſub, GV, quod
<
lb
/>
oſtendere opus erat.</
s
>
<
s
xml:id
="
echoid-s9697
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div908
"
type
="
section
"
level
="
1
"
n
="
542
">
<
head
xml:id
="
echoid-head566
"
xml:space
="
preserve
">THEOREMA VIII. PROPOS. IX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s9698
"
xml:space
="
preserve
">VIſa adhuc anteced. </
s
>
<
s
xml:id
="
echoid-s9699
"
xml:space
="
preserve
">figura, exponemus aliter rationẽ
<
lb
/>
ibi adinuentam tantummodo compoſitam ex dua-
<
lb
/>
bus, ad vnam ſolum eandem reducentes, probando .</
s
>
<
s
xml:id
="
echoid-s9700
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s9701
"
xml:space
="
preserve
">om-
<
lb
/>
nia quadrata trianguli, HCR, regula eadem, HR, retenta
<
lb
/>
ad omnia quadrata hyperbolæ, SOX, eſſe vt cubus, CV,
<
lb
/>
eſt ad parallelepipedum ter ſub, CO, & </
s
>
<
s
xml:id
="
echoid-s9702
"
xml:space
="
preserve
">quadrato, OV,
<
lb
/>
cum cubo, OV.</
s
>
<
s
xml:id
="
echoid-s9703
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s9704
"
xml:space
="
preserve
">Nam vt in ſupradicta Propoſit. </
s
>
<
s
xml:id
="
echoid-s9705
"
xml:space
="
preserve
">oſtenſum eſt, omnia quadrata
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0396-05
"
xlink:href
="
note-0396-05a
"
xml:space
="
preserve
">6. huius</
note
>
trianguli, CHR, ad omnia quadrata hyperbolæ, SOX, conuertẽ.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s9706
"
xml:space
="
preserve
">do, habent rationem compoſitam ex ea, quam habet </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>