Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
391
391
392
392
393
393
394
394
395
395
396
396
397
397
398
398
399
399
400
400
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/399.jpg" pagenum="371"/>
                    <lb/>
                  Lunæ, determinavit quod elongatio maxima heliocentrica Satelli­
                    <lb/>
                    <arrow.to.target n="note377"/>
                  tis extimi Jovialis a centro Jovis in mediocri Jovis a Sole diſtan­
                    <lb/>
                  tia ſit 8′. 21 1/2″, & diameter Jovis 41″. Ex duratione Eclipſeon
                    <lb/>
                  Satellitum in umbram Jovis incidentium prodit hæc diameter
                    <lb/>
                  quaſi 40″, atque adeo ſemidiameter 20″. Menſuravit autem
                    <emph type="italics"/>
                  Hu­
                    <lb/>
                  genius
                    <emph.end type="italics"/>
                  elongationem maximam heliocentricam Satellitis a ſe de­
                    <lb/>
                  tecti 3′. 20″ a centro Saturni, & hujus elongationis pars quarta,
                    <lb/>
                  nempe 50″, eſt diameter annuli Saturni e Sole viſi, & diameter Sa­
                    <lb/>
                  turni eſt ad diametrum annuli ut 4 ad 9, ideoque ſemidiameter
                    <lb/>
                  Saturni e Sole viſi eſt 11″. Subducatur lux erratica quæ haud
                    <lb/>
                  minor eſſe ſolet quam 2″ vel 3″: Et manebit ſemidiameter Saturni
                    <lb/>
                  quaſi 9″. Ex hiſce autem & Solis ſemidiametro mediocri 16′. 6″
                    <lb/>
                  computum ineundo prodeunt veræ Solis, Jovis, Saturni ac Terræ
                    <lb/>
                  ſemidiametri ad invicem ut 10000, 1077, 889 & 104. Unde,
                    <lb/>
                  cum pondera æqualium corporum 2 centris Solis, Jovis, Saturni
                    <lb/>
                  ac Terræ æqualiter diſtantium, ſint in Solem, Jovem, Saturnum
                    <lb/>
                  ac Terram, ut 1, (1/1033), (1/2411), & (1/227512) reſpective, & auctis vel dimi­
                    <lb/>
                  nutis diſtantiis pondera diminuantur vel augeantur in duplicata
                    <lb/>
                  ratione: pondera æqualium corporum in Solem, Jovem, Satur­
                    <lb/>
                  num ac Terram in diſtantiis 10000, 1077, 889, & 104 ab eorum
                    <lb/>
                  centris, atque adeo in eorum ſuperficiebus, erunt ut 10000, 835,
                    <lb/>
                  525, & 410 reſpective. </s>
                  <s>Quanta ſint pondera corporum in ſuper­
                    <lb/>
                  ficie Lunæ dicemus in ſequentibus.
                    <lb/>
                  </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note377"/>
                  LIBER
                    <lb/>
                  TERTIUS.</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corol.
                    <emph.end type="italics"/>
                  2. Innoteſcit etiam quantitas materiæ in Planetis ſingulis.
                    <lb/>
                  Nam quantitates materiæ in Planetis ſunt ut eorum vires in æqua­
                    <lb/>
                  libus diſtantiis ab eorum centris, id eſt, in Sole, Jove, Saturno ac
                    <lb/>
                  Terra ſunt ut 1, (1/1033), (1/2411), & (1/227512) reſpective. </s>
                  <s>Si parallaxis Solis
                    <lb/>
                  ſtatuatur major vel minor quam 10″, debebit quantitas materiæ in
                    <lb/>
                  Terra augeri vel diminui in triplicata ratione.
                    <lb/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corol.
                    <emph.end type="italics"/>
                  3. Innoteſcunt etiam denſitates Planetarum. </s>
                  <s>Nam pon­
                    <lb/>
                  dera corporum æqualium & homogeneorum in Sphæras homoge­
                    <lb/>
                  neas ſunt in ſuperficiebus Sphærarum ut Sphærarum diametri, per
                    <lb/>
                  Prop. LXXII. Lib. I. ideoque Sphærarum heterogenearum denſi­
                    <lb/>
                  tates ſunt ut pondera illa applicata ad Sphærarum diametros.
                    <lb/>
                  Erant autem veræ Solis, Jovis, Saturni ac Terræ diametri ad invi­
                    <lb/>
                  cem ut 10000, 1077, 889, & 104, & pondera in eoſdem ut 10000,
                    <lb/>
                  835, 525, & 410, & propterea denſitates ſunt ut 100, 78, 59,
                    <lb/>
                  & 396. Denſitas Terræ quæ prodit ex hoc computo non pendet
                    <lb/>
                  a parallaxi Solis, ſed determinatur per parallaxin Lunæ, & prop­
                    <lb/>
                  </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>