Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
391
392
393
394
395
396
397
398
399
400
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/399.jpg
"
pagenum
="
371
"/>
<
lb
/>
Lunæ, determinavit quod elongatio maxima heliocentrica Satelli
<
lb
/>
<
arrow.to.target
n
="
note377
"/>
tis extimi Jovialis a centro Jovis in mediocri Jovis a Sole diſtan
<
lb
/>
tia ſit 8′. 21 1/2″, & diameter Jovis 41″. Ex duratione Eclipſeon
<
lb
/>
Satellitum in umbram Jovis incidentium prodit hæc diameter
<
lb
/>
quaſi 40″, atque adeo ſemidiameter 20″. Menſuravit autem
<
emph
type
="
italics
"/>
Hu
<
lb
/>
genius
<
emph.end
type
="
italics
"/>
elongationem maximam heliocentricam Satellitis a ſe de
<
lb
/>
tecti 3′. 20″ a centro Saturni, & hujus elongationis pars quarta,
<
lb
/>
nempe 50″, eſt diameter annuli Saturni e Sole viſi, & diameter Sa
<
lb
/>
turni eſt ad diametrum annuli ut 4 ad 9, ideoque ſemidiameter
<
lb
/>
Saturni e Sole viſi eſt 11″. Subducatur lux erratica quæ haud
<
lb
/>
minor eſſe ſolet quam 2″ vel 3″: Et manebit ſemidiameter Saturni
<
lb
/>
quaſi 9″. Ex hiſce autem & Solis ſemidiametro mediocri 16′. 6″
<
lb
/>
computum ineundo prodeunt veræ Solis, Jovis, Saturni ac Terræ
<
lb
/>
ſemidiametri ad invicem ut 10000, 1077, 889 & 104. Unde,
<
lb
/>
cum pondera æqualium corporum 2 centris Solis, Jovis, Saturni
<
lb
/>
ac Terræ æqualiter diſtantium, ſint in Solem, Jovem, Saturnum
<
lb
/>
ac Terram, ut 1, (1/1033), (1/2411), & (1/227512) reſpective, & auctis vel dimi
<
lb
/>
nutis diſtantiis pondera diminuantur vel augeantur in duplicata
<
lb
/>
ratione: pondera æqualium corporum in Solem, Jovem, Satur
<
lb
/>
num ac Terram in diſtantiis 10000, 1077, 889, & 104 ab eorum
<
lb
/>
centris, atque adeo in eorum ſuperficiebus, erunt ut 10000, 835,
<
lb
/>
525, & 410 reſpective. </
s
>
<
s
>Quanta ſint pondera corporum in ſuper
<
lb
/>
ficie Lunæ dicemus in ſequentibus.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note377
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Innoteſcit etiam quantitas materiæ in Planetis ſingulis.
<
lb
/>
Nam quantitates materiæ in Planetis ſunt ut eorum vires in æqua
<
lb
/>
libus diſtantiis ab eorum centris, id eſt, in Sole, Jove, Saturno ac
<
lb
/>
Terra ſunt ut 1, (1/1033), (1/2411), & (1/227512) reſpective. </
s
>
<
s
>Si parallaxis Solis
<
lb
/>
ſtatuatur major vel minor quam 10″, debebit quantitas materiæ in
<
lb
/>
Terra augeri vel diminui in triplicata ratione.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Innoteſcunt etiam denſitates Planetarum. </
s
>
<
s
>Nam pon
<
lb
/>
dera corporum æqualium & homogeneorum in Sphæras homoge
<
lb
/>
neas ſunt in ſuperficiebus Sphærarum ut Sphærarum diametri, per
<
lb
/>
Prop. LXXII. Lib. I. ideoque Sphærarum heterogenearum denſi
<
lb
/>
tates ſunt ut pondera illa applicata ad Sphærarum diametros.
<
lb
/>
Erant autem veræ Solis, Jovis, Saturni ac Terræ diametri ad invi
<
lb
/>
cem ut 10000, 1077, 889, & 104, & pondera in eoſdem ut 10000,
<
lb
/>
835, 525, & 410, & propterea denſitates ſunt ut 100, 78, 59,
<
lb
/>
& 396. Denſitas Terræ quæ prodit ex hoc computo non pendet
<
lb
/>
a parallaxi Solis, ſed determinatur per parallaxin Lunæ, & prop
<
lb
/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>