Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
401
(381)
402
(382)
403
(383)
404
(384)
405
(385)
406
(386)
407
(387)
408
(388)
409
(389)
410
(390)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(381)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div912
"
type
="
section
"
level
="
1
"
n
="
544
">
<
p
>
<
s
xml:id
="
echoid-s9806
"
xml:space
="
preserve
">
<
pb
o
="
381
"
file
="
0401
"
n
="
401
"
rhead
="
LIBER V.
"/>
OVX, ſimilia rectangulo, XOP, regula, OX, habebunt rationem
<
lb
/>
compoſitam ex ea, quam habetrectangulum ſub, MB, HI, adre-
<
lb
/>
ctangulum ſub, RI, FB, & </
s
>
<
s
xml:id
="
echoid-s9807
"
xml:space
="
preserve
">ex ea, quam habet parallelepipedum
<
lb
/>
ſub altitudine hyperbole, ADC, baſi quadrato, AC, ad parallele-
<
lb
/>
bipedum ſub altitudine hyperbole, OVX, baſi rectangulo, XOP,
<
lb
/>
quod erat demonſtrandum.</
s
>
<
s
xml:id
="
echoid-s9808
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div914
"
type
="
section
"
level
="
1
"
n
="
545
">
<
head
xml:id
="
echoid-head569
"
xml:space
="
preserve
">THEOREMA XI. PROPOS. XII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s9809
"
xml:space
="
preserve
">ASſumptis quibuſcunq; </
s
>
<
s
xml:id
="
echoid-s9810
"
xml:space
="
preserve
">hyperbolis, in vnaquaq; </
s
>
<
s
xml:id
="
echoid-s9811
"
xml:space
="
preserve
">re-
<
lb
/>
gula baſi, oſtendemus omnia quadrata vnius ad om-
<
lb
/>
nia quadrata alterius, habere rationem compoſitam ex ra-
<
lb
/>
tione rectanguli ſub compoſita ex ſexquialtera tranſuerſi
<
lb
/>
lateris, & </
s
>
<
s
xml:id
="
echoid-s9812
"
xml:space
="
preserve
">axi, vel diametro hyperbolæ primò dictæ, & </
s
>
<
s
xml:id
="
echoid-s9813
"
xml:space
="
preserve
">ſub
<
lb
/>
compoſita ex tranſuerſo latere, & </
s
>
<
s
xml:id
="
echoid-s9814
"
xml:space
="
preserve
">axi, vel diametro hyper-
<
lb
/>
bolæ ſecundò dictæ ad re ctangulum ſub compoſita ex trã-
<
lb
/>
ſuerſi lateris ſexquialtera, & </
s
>
<
s
xml:id
="
echoid-s9815
"
xml:space
="
preserve
">axi, vel diametro hyperbolæ
<
lb
/>
ſecundò dictæ, & </
s
>
<
s
xml:id
="
echoid-s9816
"
xml:space
="
preserve
">ſub compoſita ex tranſuerſo latere, & </
s
>
<
s
xml:id
="
echoid-s9817
"
xml:space
="
preserve
">axi
<
lb
/>
vel diametro hyperbolæ primò dictæ, & </
s
>
<
s
xml:id
="
echoid-s9818
"
xml:space
="
preserve
">ex ratione paral-
<
lb
/>
lelepipediſub altitudine hyperbolæ primò dictæ, baſiau-
<
lb
/>
tem quadrato baſis eiuſdem, ad parallelepipedum ſub al-
<
lb
/>
t tudine hyp rbolæ ſecundò dictæ, baſi pariter quadrato
<
lb
/>
b ſis eiuſdem. </
s
>
<
s
xml:id
="
echoid-s9819
"
xml:space
="
preserve
">Velſi comparentur omnia quadrata hy-
<
lb
/>
perbolæ primò dictæ, ad omnia rectangula hyperbolæ fe-
<
lb
/>
cundò dictæ ſimilia cuidam rectangulo, illa ad hæchabe-
<
lb
/>
buntrationem compoſitam exratione prædictorum rectã-
<
lb
/>
gulorum, & </
s
>
<
s
xml:id
="
echoid-s9820
"
xml:space
="
preserve
">exratione parallelepipedi primò dictiad pa-
<
lb
/>
rallelepipedum ſub altitudine hyperbolæ ſecundò, dictæ
<
lb
/>
baſirectangulo, cuiomnia dicta rectangula ſunt ſimilia.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s9821
"
xml:space
="
preserve
">Vel tandem ſi comparentur omnia rectangula primæ hy-
<
lb
/>
perbolæ ſimilia cuidam rectangulo ad omnia rectangula
<
lb
/>
ſecundæ hyperbolæ ſimilia pariter cuidam rectangulo, il-
<
lb
/>
la ad hæchabebunt rationem compoſitam ex ratione pa-
<
lb
/>
rallelepipedi ſub altitudine hyperbolæ primò dictæ baſi
<
lb
/>
rectangulo, cuiomnia eiuſdem rectangula ſunt ſimilia, ad
<
lb
/>
parallelepipedum ſub altitudine ecundæ hyperbolæ baſi
<
lb
/>
rectangulo, cuiomnia eiuſdem rectangula iam dicta </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>