Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
401
(381)
402
(382)
403
(383)
404
(384)
405
(385)
406
(386)
407
(387)
408
(388)
409
(389)
410
(390)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(383)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div914
"
type
="
section
"
level
="
1
"
n
="
545
">
<
p
>
<
s
xml:id
="
echoid-s9846
"
xml:space
="
preserve
">
<
pb
o
="
383
"
file
="
0403
"
n
="
403
"
rhead
="
LIBER V.
"/>
ne hyperbolæ, BAD, bafi rectangulo ſub, BD, FY, adparallele-
<
lb
/>
pipedum ſub eadem altitudine baſi quadrato, BD: </
s
>
<
s
xml:id
="
echoid-s9847
"
xml:space
="
preserve
">pariter omnia
<
lb
/>
quadrata hyperbolæ, BAD, ad omnia rectangula hyperbolę, HM
<
lb
/>
Q, ſimilia rectangulo ſub, HQ, EN, habent rationem compofitã
<
lb
/>
ex ratione rectanguli ſub, VC, XP, ad rectangulum ſub, RP, GC,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s9848
"
xml:space
="
preserve
">parallelepipedi ſub altitudine hyperbolæ, BAD, & </
s
>
<
s
xml:id
="
echoid-s9849
"
xml:space
="
preserve
">ſub quadra-
<
lb
/>
to, BD, ad parallelepipedum ſub altitudine hyperbolæ, HMQ,
<
lb
/>
bafi rectangulo ſub, HQ, EN, ergo, ex æquo, omnia rectangula
<
lb
/>
hyperbolæ, BAD, ſimilia rectangulo ſub, BD, FY, regula, BD, ad
<
lb
/>
omnia rectangula hyperbolæ, HMQ, ſimilia rectangulo ſub, HQ,
<
lb
/>
EN, regula, HQ, habebunt rationem compoſitam ex ratione re-
<
lb
/>
ctanguli, ſub, VC, XP, ad rectangulum ſub, RP, GC, & </
s
>
<
s
xml:id
="
echoid-s9850
"
xml:space
="
preserve
">ex ratio-
<
lb
/>
ne parallelepipedi ſub altitudine hyperbolæ, BAD, baſi rectangu-
<
lb
/>
lo ſub, BD, FY, ad parallelepipedum ſub eadem altitudine, & </
s
>
<
s
xml:id
="
echoid-s9851
"
xml:space
="
preserve
">baſi
<
lb
/>
quadrato, BD, & </
s
>
<
s
xml:id
="
echoid-s9852
"
xml:space
="
preserve
">ex ratione huius parallelepipedi ad parallelepi-
<
lb
/>
pedum ſub altitudine hyperbolę, HMQ, baſi rectangulo ſub, HQ,
<
lb
/>
EN; </
s
>
<
s
xml:id
="
echoid-s9853
"
xml:space
="
preserve
">.</
s
>
<
s
xml:id
="
echoid-s9854
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9855
"
xml:space
="
preserve
">compoſitã ex ratione parallelepipedi ſub altitudine hy-
<
lb
/>
perbolę, ABD, baſi rectangulo ſub, BD, FY, ad parallelepipedum
<
lb
/>
ſub altitudine hyperbolę, HMQ, baſi rectangulo ſub, HQ, EN,
<
lb
/>
quę erant oſtend.</
s
>
<
s
xml:id
="
echoid-s9856
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div916
"
type
="
section
"
level
="
1
"
n
="
546
">
<
head
xml:id
="
echoid-head570
"
xml:space
="
preserve
">THEOREMA XII. PROPOS. XIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s9857
"
xml:space
="
preserve
">SImilium hyperbolarum omnia quadrata, regulis ea-
<
lb
/>
rum baſibus, ſunt in tripla ratione axium, vel diame-
<
lb
/>
trorum earundem.</
s
>
<
s
xml:id
="
echoid-s9858
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s9859
"
xml:space
="
preserve
">Sint ſimiles hyperbolæ, BAD, HMQ, earum latera tranſuerſa,
<
lb
/>
GA, XM, quorum ſint ſexquialteræ, AV, MR, in directum axi-
<
lb
/>
bus, vel diametris, AC, MP, baſes, & </
s
>
<
s
xml:id
="
echoid-s9860
"
xml:space
="
preserve
">regulæ ſint, BD, HQ. </
s
>
<
s
xml:id
="
echoid-s9861
"
xml:space
="
preserve
">Di-
<
lb
/>
co omnia quadrata hyperbolæ, BAD, ad omnia quadrata hyper-
<
lb
/>
bolæ, HMQ, eſſe in tripla ratione eius, quam habet, AC, ad, M
<
lb
/>
P, iungantur, BA, AD, HM, MQ. </
s
>
<
s
xml:id
="
echoid-s9862
"
xml:space
="
preserve
">Quoniam ergo hyperbolæ
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0403-01
"
xlink:href
="
note-0403-01a
"
xml:space
="
preserve
">Iuxta def.
<
lb
/>
Apoll. 6.
<
lb
/>
Con.</
note
>
ſunt ſimiles baſis, BD, ad, CA, erit vt baſis, HQ, ad, PM, & </
s
>
<
s
xml:id
="
echoid-s9863
"
xml:space
="
preserve
">ſunt
<
lb
/>
anguli in clinationis, AC, ad, BD, & </
s
>
<
s
xml:id
="
echoid-s9864
"
xml:space
="
preserve
">MP, ad, HQ, inter ſe æqua-
<
lb
/>
les, ergo triangula, BAD, HMQ, ſunt ſimilia, & </
s
>
<
s
xml:id
="
echoid-s9865
"
xml:space
="
preserve
">ideo omnia qua.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s9866
"
xml:space
="
preserve
">drata eorundem, regulis ijſdem, erunt inter ſe in triplaratione la-
<
lb
/>
terum homologorum .</
s
>
<
s
xml:id
="
echoid-s9867
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9868
"
xml:space
="
preserve
">eius, quam habet, BD, ad, HQ, vel, AC,
<
lb
/>
ad, MP; </
s
>
<
s
xml:id
="
echoid-s9869
"
xml:space
="
preserve
">quia verò quadratum, BC, ad rectangulum, GCA, eſt vt
<
lb
/>
hyperbolæ, BAD, rectum latus ad tranſuerſum .</
s
>
<
s
xml:id
="
echoid-s9870
"
xml:space
="
preserve
">I. </
s
>
<
s
xml:id
="
echoid-s9871
"
xml:space
="
preserve
">vt rectum latus
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0403-02
"
xlink:href
="
note-0403-02a
"
xml:space
="
preserve
">F Cor. 22
<
lb
/>
l. 2.</
note
>
ad tranſuerſum hyperbolæ, HMQ, quia ille ſunt ſimiles .</
s
>
<
s
xml:id
="
echoid-s9872
"
xml:space
="
preserve
">I. </
s
>
<
s
xml:id
="
echoid-s9873
"
xml:space
="
preserve
">vt </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>