Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
401
(381)
402
(382)
403
(383)
404
(384)
405
(385)
406
(386)
407
(387)
408
(388)
409
(389)
410
(390)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(385)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div918
"
type
="
section
"
level
="
1
"
n
="
547
">
<
p
>
<
s
xml:id
="
echoid-s9892
"
xml:space
="
preserve
">
<
pb
o
="
385
"
file
="
0405
"
n
="
405
"
rhead
="
LIBER V.
"/>
integræ hyperbolæ, ſiat autem parallelogram mum ſub di-
<
lb
/>
cta baſi, & </
s
>
<
s
xml:id
="
echoid-s9893
"
xml:space
="
preserve
">axi, vel diametio, in angulo ab eiſdon comen-
<
lb
/>
to, ſumpta baſi pro regula: </
s
>
<
s
xml:id
="
echoid-s9894
"
xml:space
="
preserve
">Omnia quadrata dicti paralle.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s9895
"
xml:space
="
preserve
">logrammi ad omnia quadrata trilinei extia hypeibolam
<
lb
/>
conſtituti, erunt vt idem parallelogran n@un ad ſuiieli-
<
lb
/>
quum ab eodem dempta ſemil yperbola, vna cum exceſſu,
<
lb
/>
quo dicta ſemihyperbola ſuperat. </
s
>
<
s
xml:id
="
echoid-s9896
"
xml:space
="
preserve
">dicti parallel@ gram-
<
lb
/>
mi, cum {1/6}. </
s
>
<
s
xml:id
="
echoid-s9897
"
xml:space
="
preserve
">parallelogrammi ſub targente hyperbolan, & </
s
>
<
s
xml:id
="
echoid-s9898
"
xml:space
="
preserve
">
<
lb
/>
axis, vel diametri hyperbolæ ea poitione, ad quam teli-
<
lb
/>
qua ſit, vt integra axis, vel dian eter ad eiuſdem latus
<
lb
/>
tranſuerſum.</
s
>
<
s
xml:id
="
echoid-s9899
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s9900
"
xml:space
="
preserve
">Sit ergo axis, vel diameter hyperbolę, BE, cuius
<
lb
/>
<
figure
xlink:label
="
fig-0405-01
"
xlink:href
="
fig-0405-01a
"
number
="
276
">
<
image
file
="
0405-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0405-01
"/>
</
figure
>
dimidia, BED, latus tranſuerſum, AB, & </
s
>
<
s
xml:id
="
echoid-s9901
"
xml:space
="
preserve
">in angu-
<
lb
/>
lo, BED, ſub, BE, ED, conſticutum parallelogrã-
<
lb
/>
mum, GE, ſit autem, vt, EB, ad, BA, ita, EH, ad, H
<
lb
/>
B, & </
s
>
<
s
xml:id
="
echoid-s9902
"
xml:space
="
preserve
">per, H, ducta, HM, parallela ipſi, ED, quę ſu-
<
lb
/>
matur, pro regula, ita vt ſit conſtitutum parallelo-
<
lb
/>
grammum ſub, HB, & </
s
>
<
s
xml:id
="
echoid-s9903
"
xml:space
="
preserve
">ſub, BG, quæ erit tangens
<
lb
/>
hyperbolam in puncto, B. </
s
>
<
s
xml:id
="
echoid-s9904
"
xml:space
="
preserve
">Dico gitur omnia qua-
<
lb
/>
drata, BD, ad omnia quadrata trilinei, BGD, eſſe
<
lb
/>
ut, BD, ad ſui reliquum, dempto ab eodem ſemihyperbola, BE
<
lb
/>
D, vna cum exceſſu, quo ipſa ſuperat {1/3}. </
s
>
<
s
xml:id
="
echoid-s9905
"
xml:space
="
preserve
">dicti paralle ogran mi, B
<
lb
/>
D, cum {1/6}. </
s
>
<
s
xml:id
="
echoid-s9906
"
xml:space
="
preserve
">B M. </
s
>
<
s
xml:id
="
echoid-s9907
"
xml:space
="
preserve
">Nam omnia quadrata, BD, ad rectangula ſub, B
<
lb
/>
D, & </
s
>
<
s
xml:id
="
echoid-s9908
"
xml:space
="
preserve
">ſemihyperbola, BED, ſunt vt, BD, adiplam, BED, rectan-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0405-01
"
xlink:href
="
note-0405-01a
"
xml:space
="
preserve
">Coroll. 1.
<
lb
/>
26. 2.</
note
>
gula verò ſub, BD,, & </
s
>
<
s
xml:id
="
echoid-s9909
"
xml:space
="
preserve
">BED, æquantur rectangulis ſub, BOD, B
<
lb
/>
ED, ſimul cum omnibus quadratis, BED, ergo omnia quadrata,
<
lb
/>
BD, ad rectangula ſub, BGD, BED, cum ommbus quadratis, BE
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0405-02
"
xlink:href
="
note-0405-02a
"
xml:space
="
preserve
">C Co. 23.
<
lb
/>
l. 2.</
note
>
D, erunt vt, BD, ad, BED; </
s
>
<
s
xml:id
="
echoid-s9910
"
xml:space
="
preserve
">ſunt autem omnia quadrata, BD, ad
<
lb
/>
omnia quadrata, BED, vt, AE, ad compoſitam ex {1/2}. </
s
>
<
s
xml:id
="
echoid-s9911
"
xml:space
="
preserve
">AB, & </
s
>
<
s
xml:id
="
echoid-s9912
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s9913
"
xml:space
="
preserve
">B
<
lb
/>
E, .</
s
>
<
s
xml:id
="
echoid-s9914
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9915
"
xml:space
="
preserve
">vt, BE, ad compoſitam ex {1/2}. </
s
>
<
s
xml:id
="
echoid-s9916
"
xml:space
="
preserve
">BH, & </
s
>
<
s
xml:id
="
echoid-s9917
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s9918
"
xml:space
="
preserve
">HE, quia, AE, BE,
<
lb
/>
proportionaliter diuiduntur in punctis, B, H, .</
s
>
<
s
xml:id
="
echoid-s9919
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9920
"
xml:space
="
preserve
">vt parallelogram-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0405-03
"
xlink:href
="
note-0405-03a
"
xml:space
="
preserve
">I. huius</
note
>
mum, BD, ad compofitum ex {1/2}. </
s
>
<
s
xml:id
="
echoid-s9921
"
xml:space
="
preserve
">BM, & </
s
>
<
s
xml:id
="
echoid-s9922
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s9923
"
xml:space
="
preserve
">HD, .</
s
>
<
s
xml:id
="
echoid-s9924
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s9925
"
xml:space
="
preserve
">vt, BD, ad
<
lb
/>
compoſitum ex {1/3}. </
s
>
<
s
xml:id
="
echoid-s9926
"
xml:space
="
preserve
">BD, & </
s
>
<
s
xml:id
="
echoid-s9927
"
xml:space
="
preserve
">{1/6}. </
s
>
<
s
xml:id
="
echoid-s9928
"
xml:space
="
preserve
">BM, ergo omnia quadrata, BD, ad
<
lb
/>
rectangula ſub, BGD, BED, erunt vt, BD, ad exceſſum, quo ſe-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0405-04
"
xlink:href
="
note-0405-04a
"
xml:space
="
preserve
">5. l. 2.</
note
>
mihyperbola ſuperat {1/3}. </
s
>
<
s
xml:id
="
echoid-s9929
"
xml:space
="
preserve
">BD, cum {1/6}. </
s
>
<
s
xml:id
="
echoid-s9930
"
xml:space
="
preserve
">BM, erant autem omnia qua-
<
lb
/>
drata, BD, ad rectangula ſub, IGD, BED, vna cum ommb. </
s
>
<
s
xml:id
="
echoid-s9931
"
xml:space
="
preserve
">qua-
<
lb
/>
dratis, BED, vt, BD, ad, BED, ergo omnia quadrata, BD, ad
<
lb
/>
rectangula bis ſub, BGD, BED, vna cum omnibus quadratis, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>