Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
401
(381)
402
(382)
403
(383)
404
(384)
405
(385)
406
(386)
407
(387)
408
(388)
409
(389)
410
(390)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(386)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div918
"
type
="
section
"
level
="
1
"
n
="
547
">
<
p
>
<
s
xml:id
="
echoid-s9931
"
xml:space
="
preserve
">
<
pb
o
="
386
"
file
="
0406
"
n
="
406
"
rhead
="
GEOMETRIÆ
"/>
D, erunt vt, BD, ad, BED, vna cum exceſſu, quo, BED, ſuperat,
<
lb
/>
{1/3}. </
s
>
<
s
xml:id
="
echoid-s9932
"
xml:space
="
preserve
">BD, cu-n {1/6}. </
s
>
<
s
xml:id
="
echoid-s9933
"
xml:space
="
preserve
">BM, ergo per conuerſionem rationis omnia qua-
<
lb
/>
drata, BD, ad omnia quadrata, BGD, erunt vt, BD, ad iui reli-
<
lb
/>
quum, ab eodem dempta ſemihyperbola, BED, & </
s
>
<
s
xml:id
="
echoid-s9934
"
xml:space
="
preserve
">exceſſu, quo
<
lb
/>
eadem ſuperat {1/3}. </
s
>
<
s
xml:id
="
echoid-s9935
"
xml:space
="
preserve
">BD, & </
s
>
<
s
xml:id
="
echoid-s9936
"
xml:space
="
preserve
">{1/6}. </
s
>
<
s
xml:id
="
echoid-s9937
"
xml:space
="
preserve
">BM, quod erat oſtendendum.</
s
>
<
s
xml:id
="
echoid-s9938
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div920
"
type
="
section
"
level
="
1
"
n
="
548
">
<
head
xml:id
="
echoid-head572
"
xml:space
="
preserve
">SCHOLIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s9939
"
xml:space
="
preserve
">HAnc Propoſi@ionem appoſui, vt & </
s
>
<
s
xml:id
="
echoid-s9940
"
xml:space
="
preserve
">nonnullas alias inferius
<
lb
/>
quæ licet ſupponant quadraturam byperbolæ iam notam, vt & </
s
>
<
s
xml:id
="
echoid-s9941
"
xml:space
="
preserve
">
<
lb
/>
ipſæ completè inteligantur, non inutiliter tamen aliqualiter ſcrriexi-
<
lb
/>
ſtimaui, vt ſi alicuius ind uſtria illius quadratura in lucem prodeat,
<
lb
/>
illico & </
s
>
<
s
xml:id
="
echoid-s9942
"
xml:space
="
preserve
">bic appoſita nota fiant; </
s
>
<
s
xml:id
="
echoid-s9943
"
xml:space
="
preserve
">vel è conuersò, vt per bæc aliquan-
<
lb
/>
do adinuenta ſtacim illius quadr atura nobis inoteſcat; </
s
>
<
s
xml:id
="
echoid-s9944
"
xml:space
="
preserve
">vade cumſcie-
<
lb
/>
mus, quam rationem habeat, BD, ad ſemihyperbolam, BED, appreben-
<
lb
/>
demus ſtatim, quam rationem babeant omnia quadrata, BD, ad omnia
<
lb
/>
quadrata trilinei, BGD: </
s
>
<
s
xml:id
="
echoid-s9945
"
xml:space
="
preserve
">Vel è contra, ſi quando notificabimus, quam
<
lb
/>
rationem babeant omnia quadrata, BD, ad omnia quadrata trilinei,
<
lb
/>
BGD, ſtatim compertum babebimus, quam rationembabeat, BD, ad
<
lb
/>
ſemibyperbolam, BED, & </
s
>
<
s
xml:id
="
echoid-s9946
"
xml:space
="
preserve
">eius quadratura notareddetur.</
s
>
<
s
xml:id
="
echoid-s9947
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div921
"
type
="
section
"
level
="
1
"
n
="
549
">
<
head
xml:id
="
echoid-head573
"
xml:space
="
preserve
">THEOREMA XIV. PROPOS. XV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s9948
"
xml:space
="
preserve
">SI parallelogrammum, & </
s
>
<
s
xml:id
="
echoid-s9949
"
xml:space
="
preserve
">hyperbola fuerint in eadem
<
lb
/>
baſi, & </
s
>
<
s
xml:id
="
echoid-s9950
"
xml:space
="
preserve
">circa eundem axim, vel diametrum, regula
<
lb
/>
baſi. </
s
>
<
s
xml:id
="
echoid-s9951
"
xml:space
="
preserve
">Omnia quadrata dicti parallelogrammi ad omnia
<
lb
/>
quadrata figuræ compoſitæ ex hyperbola, & </
s
>
<
s
xml:id
="
echoid-s9952
"
xml:space
="
preserve
">alterutro tri-
<
lb
/>
lineorum extra hyperbolam conſtitutorum, demptis om-
<
lb
/>
nibus quadratis aſſumpti trilinei, eruut vt dictum paral-
<
lb
/>
lelogramum ad inſcriptam hyperbolam.</
s
>
<
s
xml:id
="
echoid-s9953
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s9954
"
xml:space
="
preserve
">Sit hyperbola, CBD, in baſi, CD,
<
lb
/>
<
figure
xlink:label
="
fig-0406-01
"
xlink:href
="
fig-0406-01a
"
number
="
277
">
<
image
file
="
0406-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0406-01
"/>
</
figure
>
circa axim, vel diametrum, BE, eius
<
lb
/>
latus tranſuerſum, AB, in eadem au-
<
lb
/>
tem baſi, CD, & </
s
>
<
s
xml:id
="
echoid-s9955
"
xml:space
="
preserve
">circa eundem axim,
<
lb
/>
vel diametrum, BE, ſit parallelogrã-
<
lb
/>
mum, FD, regula verò, CD. </
s
>
<
s
xml:id
="
echoid-s9956
"
xml:space
="
preserve
">Dico
<
lb
/>
ergo omnia quadrata, FD, ad omnia
<
lb
/>
quadrata ſiguræ, GBCD, demptis
<
lb
/>
omnibus quadratis trilinei, BGD, al-
<
lb
/>
terutrius ex duobus, BFC, BGD, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>