Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
401
402
403
404
405
406
407
408
409
410
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/410.jpg
"
pagenum
="
382
"/>
<
lb
/>
<
arrow.to.target
n
="
note389
"/>
PROPOSITIO XX. PROBLEMA IV.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note389
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Invenire & inter ſe comparare Pondera corporum in Terræ hujus
<
lb
/>
regionibus diverſis.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Quoniam pondera inæqualium crurum canalis aqueæ
<
emph
type
="
italics
"/>
ACQqca
<
emph.end
type
="
italics
"/>
<
lb
/>
æqualia ſunt; & pondera partium, cruribus totis proportionalium
<
lb
/>
& ſimiliter in totis ſitarum, ſunt ad invicem ut pondera totorum,
<
lb
/>
adeoque etiam æquantur inter ſe; erunt pondera æqualium & in
<
lb
/>
cruribus ſimiliter ſitarum partium reciproce ut crura, id eſt, reci
<
lb
/>
proce ut 230 ad 229. Et par eſt ratio homogeneorum & æqua
<
lb
/>
lium quorumvis & in canalis cruribus ſimiliter ſitorum corporum.
<
lb
/>
Horum pondera ſunt reciproce ut crura, id eſt, reciproce ut di
<
lb
/>
ſtantiæ corporum a centro Terræ. Proinde ſi corpora in ſupre
<
lb
/>
mis canalium partibus, ſive in ſuperficie Terræ conſiſtant; erunt
<
lb
/>
pondera eorum ad invicem reciproce ut diſtantiæ eorum a centro.
<
lb
/>
Et eodem argumento pondera, in aliis quibuſcunque per totam
<
lb
/>
Terræ ſuperficiem regionibus, ſunt reciproce ut diſtantiæ loeorum
<
lb
/>
a centro; & propterea, ex Hypotheſi quod Terra Sphærois ſit,
<
lb
/>
dantur proportione.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Unde tale confit Theorema, quod incrementum ponderis per
<
lb
/>
gendo ab Æquatore ad Polos, ſit quam proxime ut ſinus verſus
<
lb
/>
Latitudinis duplicatæ, vel, quod perinde eſt, ut quadratum ſinus
<
lb
/>
recti Latitudinis. </
s
>
<
s
>Et in eadem circiter ratione augentur arcus
<
lb
/>
graduum Latitudinis in Meridiano. </
s
>
<
s
>Ideoque cum Latitudo
<
emph
type
="
italics
"/>
Lu
<
lb
/>
tetiæ Pariſiorum
<
emph.end
type
="
italics
"/>
ſit 48
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
50′, ea loeorum ſub Æquatore 00
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
00′,
<
lb
/>
& ea loeorum ad Polos 90
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
& duplorum ſinus verſi ſint 11334,
<
lb
/>
00000 & 20000, exiſtente Radio 10000, & gravitas ad Polum ſit
<
lb
/>
ad gravitatem ſub Æquatore ut 230 ad 229, & exceſſus gravi
<
lb
/>
tatis ad Polum ad gravitatem ſub Æquatore ut 1 ad 229: erit ex
<
lb
/>
ceſſus gravitatis in Latitudine
<
emph
type
="
italics
"/>
Lutetiæ
<
emph.end
type
="
italics
"/>
ad gravitatem ſub Æquatore,
<
lb
/>
ut 1X(11334/20000) ad 229, ſeu 5667 ad 2290000. Et propterea gravitates
<
lb
/>
totæ in his locis erunt ad invicem ut 2295667 ad 2290000. Quare
<
lb
/>
cum longitudines pendulorum æqualibus temporibus oſcillantium
<
lb
/>
ſint ut gravitates, & in Latitudine
<
emph
type
="
italics
"/>
Lutetiæ Pariſiorum
<
emph.end
type
="
italics
"/>
longitudo
<
lb
/>
penduli ſingulis minutis ſecundis oſcillantis ſit pedum trium Pa
<
lb
/>
riſienſium & linearum 8 1/9: longitudo penduli ſub Æquatore ſu
<
lb
/>
perabitur a longitudine ſynchroni penduli
<
emph
type
="
italics
"/>
Pariſienſis,
<
emph.end
type
="
italics
"/>
exceſſu li
<
lb
/>
neæ unius & 87 partium milleſimarum lineæ. Et ſimili computo
<
lb
/>
confit Tabula ſequens.
<
lb
/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>