Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
411
412
413
414
415
416
417
418
419
420
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/411.jpg
"
pagenum
="
383
"/>
<
lb
/>
<
arrow.to.target
n
="
note390
"/>
</
s
>
</
p
>
<
table
>
<
row
>
<
cell
>
<
emph
type
="
italics
"/>
Latitudo
<
lb
/>
Loci
<
emph.end
type
="
italics
"/>
</
cell
>
<
cell
>
<
emph
type
="
italics
"/>
Longitudo
<
lb
/>
Penduli
<
emph.end
type
="
italics
"/>
</
cell
>
<
cell
>
<
emph
type
="
italics
"/>
Menſura
<
lb
/>
Gradus unius
<
lb
/>
in Meridiano
<
emph.end
type
="
italics
"/>
</
cell
>
</
row
>
<
row
>
<
cell
>Gr.</
cell
>
<
cell
>Ped.</
cell
>
<
cell
>Lin.</
cell
>
<
cell
>Hexaped.</
cell
>
</
row
>
<
row
>
<
cell
>0</
cell
>
<
cell
>3.</
cell
>
<
cell
>7,468</
cell
>
<
cell
>56909</
cell
>
</
row
>
<
row
>
<
cell
>5</
cell
>
<
cell
>3.</
cell
>
<
cell
>7,482</
cell
>
<
cell
>56914</
cell
>
</
row
>
<
row
>
<
cell
>10</
cell
>
<
cell
>3.</
cell
>
<
cell
>7,526</
cell
>
<
cell
>56931</
cell
>
</
row
>
<
row
>
<
cell
>15</
cell
>
<
cell
>3.</
cell
>
<
cell
>7,596</
cell
>
<
cell
>56959</
cell
>
</
row
>
<
row
>
<
cell
>20</
cell
>
<
cell
>3.</
cell
>
<
cell
>7,692</
cell
>
<
cell
>56996</
cell
>
</
row
>
<
row
>
<
cell
>25</
cell
>
<
cell
>3.</
cell
>
<
cell
>7,811</
cell
>
<
cell
>57042</
cell
>
</
row
>
<
row
>
<
cell
>30</
cell
>
<
cell
>3.</
cell
>
<
cell
>7,948</
cell
>
<
cell
>57096</
cell
>
</
row
>
<
row
>
<
cell
>35</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,099</
cell
>
<
cell
>57155</
cell
>
</
row
>
<
row
>
<
cell
>40</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,261</
cell
>
<
cell
>57218</
cell
>
</
row
>
<
row
>
<
cell
>1</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,294</
cell
>
<
cell
>57231</
cell
>
</
row
>
<
row
>
<
cell
>2</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,327</
cell
>
<
cell
>57244</
cell
>
</
row
>
<
row
>
<
cell
>3</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,361</
cell
>
<
cell
>57257</
cell
>
</
row
>
<
row
>
<
cell
>4</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,394</
cell
>
<
cell
>57270</
cell
>
</
row
>
<
row
>
<
cell
>45</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,428</
cell
>
<
cell
>57283</
cell
>
</
row
>
<
row
>
<
cell
>6</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,461</
cell
>
<
cell
>57296</
cell
>
</
row
>
<
row
>
<
cell
>7</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,494</
cell
>
<
cell
>57309</
cell
>
</
row
>
<
row
>
<
cell
>8</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,528</
cell
>
<
cell
>57322</
cell
>
</
row
>
<
row
>
<
cell
>9</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,561</
cell
>
<
cell
>57335</
cell
>
</
row
>
<
row
>
<
cell
>50</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,594</
cell
>
<
cell
>57348</
cell
>
</
row
>
<
row
>
<
cell
>55</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,756</
cell
>
<
cell
>57411</
cell
>
</
row
>
<
row
>
<
cell
>60</
cell
>
<
cell
>3.</
cell
>
<
cell
>8,907</
cell
>
<
cell
>57470</
cell
>
</
row
>
<
row
>
<
cell
>65</
cell
>
<
cell
>3.</
cell
>
<
cell
>9,044</
cell
>
<
cell
>57524</
cell
>
</
row
>
<
row
>
<
cell
>70</
cell
>
<
cell
>3.</
cell
>
<
cell
>9,162</
cell
>
<
cell
>57570</
cell
>
</
row
>
<
row
>
<
cell
>75</
cell
>
<
cell
>3.</
cell
>
<
cell
>9,258</
cell
>
<
cell
>57607</
cell
>
</
row
>
<
row
>
<
cell
>80</
cell
>
<
cell
>3.</
cell
>
<
cell
>9,329</
cell
>
<
cell
>57635</
cell
>
</
row
>
<
row
>
<
cell
>85</
cell
>
<
cell
>3.</
cell
>
<
cell
>9,372</
cell
>
<
cell
>57652</
cell
>
</
row
>
<
row
>
<
cell
>90</
cell
>
<
cell
>3.</
cell
>
<
cell
>9,387</
cell
>
<
cell
>57657</
cell
>
</
row
>
</
table
>
<
p
type
="
main
">
<
s
>Conſtat autem per hanc Tabulam, quod graduum inæqualitas
<
lb
/>
tam parva ſit, ut in rebus Geographicis figura Terræ pro Sphæ
<
lb
/>
rica haberi poſſit, quodQ.E.I.æqualitas diametrorum Terræ faci
<
lb
/>
lius & certius per experimenta pendulorum deprehendi poſſit vel
<
lb
/>
etiam per Eclipſes Lunæ, quam per arcus Geographice menſuratos
<
lb
/>
in Meridiano. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>