Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
411
(391)
412
(392)
413
(393)
414
(394)
415
(395)
416
(396)
417
(397)
418
(398)
419
(399)
420
(400)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(392)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div933
"
type
="
section
"
level
="
1
"
n
="
557
">
<
p
>
<
s
xml:id
="
echoid-s10125
"
xml:space
="
preserve
">
<
pb
o
="
392
"
file
="
0412
"
n
="
412
"
rhead
="
GEOMETRIÆ
"/>
ipſam, QP, parallelam ipſi, BD, quæerit tangens fectionem, BN
<
lb
/>
D, in puncto, N, oſtendemus omnia quadrata, BS, ad reliquum,
<
lb
/>
demptis omnibus quadratis. </
s
>
<
s
xml:id
="
echoid-s10126
"
xml:space
="
preserve
">hyperbolæ, BND, (ſumptis medijs
<
lb
/>
omnibus quadratis, BP,) eſſe vt rectangulum, MFO, ad rectangu,
<
lb
/>
lum bis ſub, MOF, cum {2/3}. </
s
>
<
s
xml:id
="
echoid-s10127
"
xml:space
="
preserve
">quadrati, FN, .</
s
>
<
s
xml:id
="
echoid-s10128
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10129
"
xml:space
="
preserve
">vt rectangulum, NE
<
lb
/>
O, ad rectangulum bis ſub, NOE, cum {2/3}. </
s
>
<
s
xml:id
="
echoid-s10130
"
xml:space
="
preserve
">quadrati, EM, nam, E
<
lb
/>
M, eſt æqualis, NF, & </
s
>
<
s
xml:id
="
echoid-s10131
"
xml:space
="
preserve
">ideò etiam, EN, ęqualis, MF, &</
s
>
<
s
xml:id
="
echoid-s10132
"
xml:space
="
preserve
">, EO, pa-
<
lb
/>
riter eſt æqualis ipſi, OF. </
s
>
<
s
xml:id
="
echoid-s10133
"
xml:space
="
preserve
">Tandem vt vnum ad vnum, ita omnia
<
lb
/>
ad omnia .</
s
>
<
s
xml:id
="
echoid-s10134
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10135
"
xml:space
="
preserve
">vt omnia quadrata, BS, ad reliquum, demptis omni.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s10136
"
xml:space
="
preserve
">bus quadratis hyperbolæ, BND, .</
s
>
<
s
xml:id
="
echoid-s10137
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10138
"
xml:space
="
preserve
">vt rectangulum, MFO, ad re-
<
lb
/>
ctangulum bis ſub, MOF, cum {2/3}. </
s
>
<
s
xml:id
="
echoid-s10139
"
xml:space
="
preserve
">quadrati, FN, ita omnia qua-
<
lb
/>
drata, BC, adreliquum. </
s
>
<
s
xml:id
="
echoid-s10140
"
xml:space
="
preserve
">demptis ab eiſdem omnibus quadratis hy-
<
lb
/>
perbolarum oppolitarum, AMC, BND, eſt autem, vt rectangu-
<
lb
/>
lum, MFO, ad rectangulum bis ſub, MOF, cum {2/3} quadrati, FN,
<
lb
/>
ita rectangulum, NOE, ad rectangulum bis ſub, NOE, cum {2/3}. </
s
>
<
s
xml:id
="
echoid-s10141
"
xml:space
="
preserve
">
<
lb
/>
quadra @, EM, ergo omnia quadrata, BC, ad reliquum demptis
<
lb
/>
ab j@d@m omnibus quadratis oppoſitarum hyperbolarum, AMC,
<
lb
/>
BND, erunt vt rectangulum ſub, NEO, ad rectangulum bis ſub,
<
lb
/>
NOE, cum {2/3}. </
s
>
<
s
xml:id
="
echoid-s10142
"
xml:space
="
preserve
">quadrati, ME, quod oſtendereopus erat.</
s
>
<
s
xml:id
="
echoid-s10143
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div935
"
type
="
section
"
level
="
1
"
n
="
558
">
<
head
xml:id
="
echoid-head582
"
xml:space
="
preserve
">THEOREMA XX. PROPOS. XXI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s10144
"
xml:space
="
preserve
">SI, veluti in anteced. </
s
>
<
s
xml:id
="
echoid-s10145
"
xml:space
="
preserve
">ſit parallelogrammum habens op-
<
lb
/>
poſita latera, quæ ſint ad diametrum tranſuerſam op-
<
lb
/>
poſitaruin ſectionem ordinatim applicata, quæq; </
s
>
<
s
xml:id
="
echoid-s10146
"
xml:space
="
preserve
">oppoſi-
<
lb
/>
tarum hyperbolarum ſint baſes, inſuper deſcribantur earũ
<
lb
/>
aſymptoti, & </
s
>
<
s
xml:id
="
echoid-s10147
"
xml:space
="
preserve
">regula ſit latus tranſuerſum, conſtituti paral-
<
lb
/>
lelogra nmi omnia quadrata ad omnia quadrata figuræ,
<
lb
/>
quæ continetur lateribus parallelogrammi iam dicti, late-
<
lb
/>
ritranſuerſo parallelis, & </
s
>
<
s
xml:id
="
echoid-s10148
"
xml:space
="
preserve
">portionibus oppoſitarum ſectio-
<
lb
/>
num inter eadem latera comprehenſis, erunt vt quadratũ
<
lb
/>
vniuſcuiuſuis laterum dicti para llelogrammi lateri tran-
<
lb
/>
ſuerſo æquidiſtantium ad quadratum lateris tranſuerſi,
<
lb
/>
vna cum. </
s
>
<
s
xml:id
="
echoid-s10149
"
xml:space
="
preserve
">quadrati portionis dicti lateris eiuſdem paral-
<
lb
/>
lelogrammi, quæ inter aſymptotos incluſa manet.</
s
>
<
s
xml:id
="
echoid-s10150
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s10151
"
xml:space
="
preserve
">Sint oppoſitæ ſectiones, FAD, EVC, quarum latus tranſuer-
<
lb
/>
ſum, AV, centrum, O, per quod tranſeant earum aſymptoti, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>