Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
411
(391)
412
(392)
413
(393)
414
(394)
415
(395)
416
(396)
417
(397)
418
(398)
419
(399)
420
(400)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(395)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div938
"
type
="
section
"
level
="
1
"
n
="
559
">
<
p
>
<
s
xml:id
="
echoid-s10207
"
xml:space
="
preserve
">
<
pb
o
="
395
"
file
="
0415
"
n
="
415
"
rhead
="
LIBER V.
"/>
ctanguli fub, AZ, ZV, .</
s
>
<
s
xml:id
="
echoid-s10208
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10209
"
xml:space
="
preserve
">erit æquale rectangulo ſub, AZ, & </
s
>
<
s
xml:id
="
echoid-s10210
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10211
"
xml:space
="
preserve
">Z
<
lb
/>
V, & </
s
>
<
s
xml:id
="
echoid-s10212
"
xml:space
="
preserve
">ideò omnia quadrata, FC, ad omnia quadrata figuræ, FAD
<
lb
/>
CVE, erunt vt quadratum, ZO, ad quadratum, OV, cum rectan.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s10213
"
xml:space
="
preserve
">gulo ſub, AZ, & </
s
>
<
s
xml:id
="
echoid-s10214
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10215
"
xml:space
="
preserve
">ZV, .</
s
>
<
s
xml:id
="
echoid-s10216
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10217
"
xml:space
="
preserve
">vt horum quadrupla, nempè, vt qua-
<
lb
/>
dratum, RZ, ad quadratum, AV, cum rectangulo ſub, AZ, & </
s
>
<
s
xml:id
="
echoid-s10218
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10219
"
xml:space
="
preserve
">
<
lb
/>
ZV, .</
s
>
<
s
xml:id
="
echoid-s10220
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10221
"
xml:space
="
preserve
">ſub, AZ, & </
s
>
<
s
xml:id
="
echoid-s10222
"
xml:space
="
preserve
">ſexquitertia, ZV, quæ ratio ſic proponebatur
<
lb
/>
explicanda, quæque, vt libet, retineri poterit.</
s
>
<
s
xml:id
="
echoid-s10223
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div940
"
type
="
section
"
level
="
1
"
n
="
560
">
<
head
xml:id
="
echoid-head584
"
xml:space
="
preserve
">COROLLARIVM:</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s10224
"
xml:space
="
preserve
">_H_Inc patet quadratum dimidiæ eius, quælateri tranſuerſo op-
<
lb
/>
poſitarum ſectionum æquidiſtanter ducitur, ſubtenditurq; </
s
>
<
s
xml:id
="
echoid-s10225
"
xml:space
="
preserve
">an-
<
lb
/>
gulo, qui deinceps eſt angulo ſub aſymptotis comprebenſo, ſectiones
<
lb
/>
continenti æquale eſſe rectangulo ſub compoſita ex latere tranſuerſo,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s10226
"
xml:space
="
preserve
">axi, vel diametro alterutrius conſtitutarum hyperbolarum per or-
<
lb
/>
d natim applicatas à punctis, quibus dicta ſubtenſa incidit, producta,
<
lb
/>
ipſis oppoſitis ſectionibus, & </
s
>
<
s
xml:id
="
echoid-s10227
"
xml:space
="
preserve
">ſub eodem axi, vel diametro, quod pa-
<
lb
/>
tet, veluti oſtenſum eſt quadratum, SL, æquari rectangulo, .</
s
>
<
s
xml:id
="
echoid-s10228
"
xml:space
="
preserve
">AZV.</
s
>
<
s
xml:id
="
echoid-s10229
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div941
"
type
="
section
"
level
="
1
"
n
="
561
">
<
head
xml:id
="
echoid-head585
"
xml:space
="
preserve
">THEOREMA XXI. PROPOS. XXII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s10230
"
xml:space
="
preserve
">SI per vertices oppoſitarum ſectionum rectæ lineæ or-
<
lb
/>
dinatim ad eorum axim, vel diametrum applicentur
<
lb
/>
vſque ad aſymptotos productæ, quarum extrema ad eaſdé
<
lb
/>
partes ſumpta iungantur rectis lineis, iungenteſq; </
s
>
<
s
xml:id
="
echoid-s10231
"
xml:space
="
preserve
">vſq; </
s
>
<
s
xml:id
="
echoid-s10232
"
xml:space
="
preserve
">ad
<
lb
/>
oppoſitas ſectiones producantur, erunt iſtæ parallelogrã,
<
lb
/>
mi oppoſita latera, quod parallelogrammum ſi complea-
<
lb
/>
tur, regula exiſtente latere tranſuerſo: </
s
>
<
s
xml:id
="
echoid-s10233
"
xml:space
="
preserve
">Omnia quadrata
<
lb
/>
conſtituti parallelogrammi erunt ſexquialtera omnium
<
lb
/>
quadratorum figuræ comprehenſæ ſub lateribus dictipa-
<
lb
/>
rallelogrammi lateri tranſuerſo æquidiſtantibus, & </
s
>
<
s
xml:id
="
echoid-s10234
"
xml:space
="
preserve
">ſub
<
lb
/>
oppoſitarum ſectionum portionibus inter eadem latera cõ-
<
lb
/>
cluſis: </
s
>
<
s
xml:id
="
echoid-s10235
"
xml:space
="
preserve
">Omnia verò quadrata dictæ figuræ erunt quadru-
<
lb
/>
pla omnium quadratorum triangulorum, quiſub aſympto-
<
lb
/>
tis & </
s
>
<
s
xml:id
="
echoid-s10236
"
xml:space
="
preserve
">ijſdem incluſis portionibus laterum parallelogram-
<
lb
/>
mi, tranſuerſo lateri æquidiſtantium continentur.</
s
>
<
s
xml:id
="
echoid-s10237
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s10238
"
xml:space
="
preserve
">Sint oppofitæ fectiones, FAD, EVC, quarum latus </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>