Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
411
412
413
414
415
416
417
418
419
420
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/417.jpg
"
pagenum
="
389
"/>
Prop. </
s
>
<
s
>LXVI,) quam in ipſius Aphelio. </
s
>
<
s
>Atque hæ ſunt inæquali
<
lb
/>
<
arrow.to.target
n
="
note420
"/>
tates inſigniores ab Aſtronomis notatæ. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note420
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Sunt etiam aliæ quædam nondum obſervatæ inæqualitates, qui
<
lb
/>
bus motus Lunares adeo perturbantur, ut nulla hactenus lege ad
<
lb
/>
Regulam aliquam certam reduci potuerint. </
s
>
<
s
>Velocitates enim ſeu
<
lb
/>
motus horarii Apogæi & Nodorum Lunæ, & eorundem æquati
<
lb
/>
ones, ut & differentia inter Eccentricitatem maximam in Syzygiis
<
lb
/>
& minimam in Quadraturis, & inæqualitas quæ Variatio dicitur,
<
lb
/>
augentur ac diminuuntur annuatim (per Corol. </
s
>
<
s
>14. Prop. </
s
>
<
s
>LXVI.)
<
lb
/>
in triplicata ratione diametri apparentis Solaris. </
s
>
<
s
>Et Variatio præ
<
lb
/>
terea augetur vel diminuitur in duplicata ratione temporis in
<
lb
/>
ter quadraturas quam proxime (per Corol. </
s
>
<
s
>1. & 2. Lem. </
s
>
<
s
>X. &
<
lb
/>
Corol. </
s
>
<
s
>16. Prop. </
s
>
<
s
>LXVI. Lib. </
s
>
<
s
>I.) Sed hæc inæqualitas in calculo
<
lb
/>
Aſtronomico, ad Proſthaphæreſin Lunæ referri ſolet, & cum ea
<
lb
/>
confundi. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XXIII. PROBLEMA V.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Motus inæquales Satellitum Jovis & Saturni à motibus Luna
<
lb
/>
ribus derivare.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Ex motibus Lunæ noſtræ motus analogi Lunarum ſeu Satelli
<
lb
/>
tum Jovis ſic derivantur. </
s
>
<
s
>Motus medius Nodorum Satellitis ex
<
lb
/>
timi Jovialis, eſt ad motum medium Nodorum Lunæ noſtræ, in ra
<
lb
/>
tione compoſita ex ratione duplicata temporis periodici Terræ
<
lb
/>
circa Solem ad tempus periodicum Jovis circa Solem, & ratione
<
lb
/>
ſimplici temporis periodici Satellitis circa Jovem ad tempus perio
<
lb
/>
dicum Lunæ circa Terram: (per Corol. </
s
>
<
s
>16. Prop. </
s
>
<
s
>LXVI.) adeoque
<
lb
/>
annis centum conficit Nodus iſte 8
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
24′. </
s
>
<
s
>in antecedentia. </
s
>
<
s
>Motus
<
lb
/>
medii Nodorum Satellitum interiorum ſunt ad motum hujus, ut
<
lb
/>
illorum tempora periodica ad tempus periodicum hujus, per idem
<
lb
/>
Corollarium, & inde dantur. </
s
>
<
s
>Motus autem Augis Satellitis cu
<
lb
/>
juſQ.E.I. conſequentia, eſt ad motum Nodorum ipſius in antece
<
lb
/>
dentia, ut motus Apogæi Lunæ noſtræ ad hujus motum Nodo
<
lb
/>
rum, (per idem Corol.) & inde datur. </
s
>
<
s
>Diminui tamen debet
<
lb
/>
motus Augis ſic inventus in ratione 5 ad 9 vel 1 ad 2 circiter, ob
<
lb
/>
cauſam quam hic exponere non vacat. </
s
>
<
s
>Æquationes maximæ No
<
lb
/>
dorum & Augis Satellitis cujuſque fere ſunt ad æquationes maxi
<
lb
/>
mas Nodorum & Augis Lunæ reſpective, ut motus Nodorum &
<
lb
/>
Augis Satellitum tempore unius revolutionis æquationum prio-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>