Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
411
(391)
412
(392)
413
(393)
414
(394)
415
(395)
416
(396)
417
(397)
418
(398)
419
(399)
420
(400)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(398)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div944
"
type
="
section
"
level
="
1
"
n
="
563
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s10331
"
xml:space
="
preserve
">
<
pb
o
="
398
"
file
="
0418
"
n
="
418
"
rhead
="
GEOMETRIÆ
"/>
lateri tranſ uerſo parallela, quod ſumabur pro regula, ita inquám, vt
<
lb
/>
omnia quadrata deſeripti parallelogram ni ad omnia quadrata figuræ
<
lb
/>
dictis lateribus, quæ tranſuerſo lateri æ quidiſtant, & </
s
>
<
s
xml:id
="
echoid-s10332
"
xml:space
="
preserve
">ab ijſdem ſe-
<
lb
/>
ctionum oppoſitarum in cluſis portionibus compræbenſæ, demptis om-
<
lb
/>
bus quadratis triangulorum ſub aſymptotis, & </
s
>
<
s
xml:id
="
echoid-s10333
"
xml:space
="
preserve
">ab ijs incluſis portio-
<
lb
/>
nibus laterum, parallelogrammi tranſuerſo lateri æquidiſta ntium,
<
lb
/>
babeant datam rationem, dummodo ea ſit maioris inæqualitatis: </
s
>
<
s
xml:id
="
echoid-s10334
"
xml:space
="
preserve
">Sit
<
lb
/>
in figura Propos. </
s
>
<
s
xml:id
="
echoid-s10335
"
xml:space
="
preserve
">21. </
s
>
<
s
xml:id
="
echoid-s10336
"
xml:space
="
preserve
">data ratio maioris inæ quadlitatis, quam babet,
<
lb
/>
KB, ad, GM, & </
s
>
<
s
xml:id
="
echoid-s10337
"
xml:space
="
preserve
">ſupponatur ductam ſuiſſe, FE, æqudiſtantem lateri
<
lb
/>
tranſuerſo, AV, ita vt quadratum, FE, ad quadratum, Av, ſit vt, K
<
lb
/>
B, ad, GM, & </
s
>
<
s
xml:id
="
echoid-s10338
"
xml:space
="
preserve
">conſtructam fuiſſe figuram, velutibi factum eſt, patet
<
lb
/>
igitur, quia omnia quadrata, FC, ad omnia quadrata figurę, FADCV
<
lb
/>
E, ſunt vt quadratum, FE, ad quadratum, AV, ex Coroll, antec. </
s
>
<
s
xml:id
="
echoid-s10339
"
xml:space
="
preserve
">dem-
<
lb
/>
ptis tamen ab omnibus quadratis dictæ figuræ, omnibus quadratis
<
lb
/>
triangulorum, NOR, HOS, quod ideò ad eadom erunt in ratione da-
<
lb
/>
ta .</
s
>
<
s
xml:id
="
echoid-s10340
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s10341
"
xml:space
="
preserve
">m ea quam babet, KB, ad, GM.</
s
>
<
s
xml:id
="
echoid-s10342
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div945
"
type
="
section
"
level
="
1
"
n
="
564
">
<
head
xml:id
="
echoid-head589
"
xml:space
="
preserve
">THEOREMA XXII. PROPOS. XXIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s10343
"
xml:space
="
preserve
">SI duo parallelogramma vtcunq; </
s
>
<
s
xml:id
="
echoid-s10344
"
xml:space
="
preserve
">fectionibus oppoſitis
<
lb
/>
circumſcripta fuerint modo ſolito, habentia ſcilicet
<
lb
/>
duo oppoſita latera, quæ ſint oppoſitarum hyperbolarum
<
lb
/>
baſes, & </
s
>
<
s
xml:id
="
echoid-s10345
"
xml:space
="
preserve
">reliqua duo lateri rianſuerſo æ quidiſtantia, regu-
<
lb
/>
la vna dictarum baſium: </
s
>
<
s
xml:id
="
echoid-s10346
"
xml:space
="
preserve
">Omnia quadrata vnius paralle-
<
lb
/>
logrammi, demptis omnibus quadratis oppoſitarum hy-
<
lb
/>
perbolarum communes cum eo baſes habentium, ad om-
<
lb
/>
nia quadrata alterius parallelogrammi, demptis omnibus
<
lb
/>
quadratis oppoſitarum hyperbolarum communes cum eo
<
lb
/>
baſes habentium, erunt vt parallelepipedum ſub altitudi-
<
lb
/>
ne axi, vel diametro vnius hyperbolarum, cuius eſt com-
<
lb
/>
munis baſis cum parallelogrammo primò dicto, baſirectã-
<
lb
/>
gulo ſub dimidia tranſuerſi lateris, & </
s
>
<
s
xml:id
="
echoid-s10347
"
xml:space
="
preserve
">ſub compoſita ex ea-
<
lb
/>
dem dimidia, & </
s
>
<
s
xml:id
="
echoid-s10348
"
xml:space
="
preserve
">axi, vel diametro dictæ hyperbolæ, vna
<
lb
/>
cum. </
s
>
<
s
xml:id
="
echoid-s10349
"
xml:space
="
preserve
">quadrati eiuſdem axis, vel diametri, ad parallele-
<
lb
/>
pipedum ſub altitudine axi, vel diametro hyperbolæ, cui-
<
lb
/>
us eſt communis baſis cum parallelogrammo ſecundò di-
<
lb
/>
cto, baſirectangulo ſub dimidia tranſuerſi lateris, & </
s
>
<
s
xml:id
="
echoid-s10350
"
xml:space
="
preserve
">ſub
<
lb
/>
compoſita ex eadem dimidia, & </
s
>
<
s
xml:id
="
echoid-s10351
"
xml:space
="
preserve
">axi, vel diametro </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>