Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
411
(391)
412
(392)
413
(393)
414
(394)
415
(395)
416
(396)
417
(397)
418
(398)
419
(399)
420
(400)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(399)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div945
"
type
="
section
"
level
="
1
"
n
="
564
">
<
p
>
<
s
xml:id
="
echoid-s10351
"
xml:space
="
preserve
">
<
pb
o
="
399
"
file
="
0419
"
n
="
419
"
rhead
="
LIBER V.
"/>
bolæ poſtremò dictæ, vna cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10352
"
xml:space
="
preserve
">quadrati eiuſdem axis,
<
lb
/>
vel diametri.</
s
>
<
s
xml:id
="
echoid-s10353
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s10354
"
xml:space
="
preserve
">Sint oppoſitis ſectionibus, FAD, EVC, quorum latus tranſuer-
<
lb
/>
ſum, AV, centrum, O, circumſcripta parallelogramma vtcunque'
<
lb
/>
<
figure
xlink:label
="
fig-0419-01
"
xlink:href
="
fig-0419-01a
"
number
="
284
">
<
image
file
="
0419-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0419-01
"/>
</
figure
>
FC, TN, quorum duo oppoſita latera
<
lb
/>
ſint baſes oppoſitarum hyperbolarum, F
<
lb
/>
D, EC, nempè hyperbolarum, FAD, EV
<
lb
/>
C, &</
s
>
<
s
xml:id
="
echoid-s10355
"
xml:space
="
preserve
">, TY, MN, hyperbolarum, TAY, M
<
lb
/>
VN, nempè ſint ad axim, vel diametrum
<
lb
/>
tranſuerſam, AV, ordinatim applicata, & </
s
>
<
s
xml:id
="
echoid-s10356
"
xml:space
="
preserve
">
<
lb
/>
reliqua latera, ad ſecundum axim, vel dia-
<
lb
/>
metrum, quæ ſit, XL, pariter ordinatim
<
lb
/>
applicata, regula autem vna dictarum ba-
<
lb
/>
ſinum, vt, EC. </
s
>
<
s
xml:id
="
echoid-s10357
"
xml:space
="
preserve
">Dico ergo omnia quadra.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s10358
"
xml:space
="
preserve
">ta, FC, demptis omnibus quadratis oppo. </
s
>
<
s
xml:id
="
echoid-s10359
"
xml:space
="
preserve
">
<
lb
/>
ſitarum hyperbolarum, FAD, EVC, ad
<
lb
/>
omnia quadrata, FN, demptis omnibus
<
lb
/>
quadratis oppotitarum hyperbolarum, T
<
lb
/>
AY, MVN, eſſe vt parallelepipedum ſub
<
lb
/>
alcicudine, ZV, baſi rectangulo VOZ, cũ
<
lb
/>
{1/3}. </
s
>
<
s
xml:id
="
echoid-s10360
"
xml:space
="
preserve
">quadrati, ZV, ad parallelpipedu ſub altitudine, SV, baſi re-
<
lb
/>
ctangulo, VOS, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10361
"
xml:space
="
preserve
">quadrati, SV: </
s
>
<
s
xml:id
="
echoid-s10362
"
xml:space
="
preserve
">Omnia .</
s
>
<
s
xml:id
="
echoid-s10363
"
xml:space
="
preserve
">o. </
s
>
<
s
xml:id
="
echoid-s10364
"
xml:space
="
preserve
">quadrata, FC,
<
lb
/>
dempt somnibus quadratis oppoſitarum hyperbolarum, FAD, E
<
lb
/>
VC, ad omnia quadrata, TN, demp@ sommbus quadratis oppo-
<
lb
/>
ſitarum hyperbolarum, TAY, MVN, habentrationem compo-
<
lb
/>
fitam ex ea, quain habent omnia quadrata, FC, demptis omnibus
<
lb
/>
quadratis oppoſitarum hyperbolarum, FAD, EVC, ad omnia
<
lb
/>
quadrata, FC, & </
s
>
<
s
xml:id
="
echoid-s10365
"
xml:space
="
preserve
">ex ratione horum ad omnia quadrata, TN, & </
s
>
<
s
xml:id
="
echoid-s10366
"
xml:space
="
preserve
">
<
lb
/>
ex ratione iſtorum ad omnia eorundem quadrata, demptis omni-
<
lb
/>
bus quadratis oppoſitarum hyperbolarum, TAY, MVN; </
s
>
<
s
xml:id
="
echoid-s10367
"
xml:space
="
preserve
">verum
<
lb
/>
omnia quadrata, FC, demptis omnibus quadratis oppoſitarum
<
lb
/>
hyperbolarum, FAD, EVC, ad omnia quadrata, FC, ſunt vt re-
<
lb
/>
ctangulum, AOZ, b@s, cum {2/3}. </
s
>
<
s
xml:id
="
echoid-s10368
"
xml:space
="
preserve
">quadrati, ZV, ad rectangulum, A
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0419-01
"
xlink:href
="
note-0419-01a
"
xml:space
="
preserve
">20. huius,</
note
>
ZO: </
s
>
<
s
xml:id
="
echoid-s10369
"
xml:space
="
preserve
">Omnia item quadrata, FC, ad omnia quadrata, TN, habẽt
<
lb
/>
rationem compoſitam ex ratione, FE, ad, TM, vel, EX, ad, MH,
<
lb
/>
ſiue, ZO, ad, OS, & </
s
>
<
s
xml:id
="
echoid-s10370
"
xml:space
="
preserve
">ex ratione quadrati, EC, ad quadratum, MN,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0419-02
"
xlink:href
="
note-0419-02a
"
xml:space
="
preserve
">Defin. 12.
<
lb
/>
l. 1.</
note
>
ſiue rectanguli, AZV, ad rectangulum, ASV: </
s
>
<
s
xml:id
="
echoid-s10371
"
xml:space
="
preserve
">@andem omnia
<
lb
/>
quadrata, TN ad eadem demptis omnibus quadratis oppoſitarũ
<
lb
/>
hyperbolarum, TAY, MVN, ſunt vt rectangulum, ASO, ad re-
<
lb
/>
ctangulum, AOS, bis, cum {2/3}. </
s
>
<
s
xml:id
="
echoid-s10372
"
xml:space
="
preserve
">quadrati, SV, habemus ergo has
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0419-03
"
xlink:href
="
note-0419-03a
"
xml:space
="
preserve
">20: huius.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>