Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
421
(401)
422
(402)
423
(403)
424
(404)
425
(405)
426
(406)
427
(407)
428
(408)
429
(409)
430
(410)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(404)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div951
"
type
="
section
"
level
="
1
"
n
="
567
">
<
p
>
<
s
xml:id
="
echoid-s10496
"
xml:space
="
preserve
">
<
pb
o
="
404
"
file
="
0424
"
n
="
424
"
rhead
="
GEOMETRIÆ
"/>
nem rectanguli, DC, CE, vel ſub, RZ, EC, ad quadratum, AV,
<
lb
/>
cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10497
"
xml:space
="
preserve
">quadrati, kI, ergo omnia quadrata, FC, demptis omnibus
<
lb
/>
<
figure
xlink:label
="
fig-0424-01
"
xlink:href
="
fig-0424-01a
"
number
="
287
">
<
image
file
="
0424-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0424-01
"/>
</
figure
>
quadratis oppoſitarum hyperbola-
<
lb
/>
rum, FAD, EVC, regula, EC, ad
<
lb
/>
omnia quadrata figuræ, FADCVE,
<
lb
/>
regula, DC, vel, AV, habebunt ra-
<
lb
/>
tionem compoſitam ex ractione re-
<
lb
/>
ctanguli, AOZ, bis cum {2/3}. </
s
>
<
s
xml:id
="
echoid-s10498
"
xml:space
="
preserve
">quadra
<
lb
/>
ti, KI, ad rectangulum, AZO, & </
s
>
<
s
xml:id
="
echoid-s10499
"
xml:space
="
preserve
">ex
<
lb
/>
ratione rectanguli ſub, RZ, EC, ad
<
lb
/>
quadratum, AV, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10500
"
xml:space
="
preserve
">quadrati,
<
lb
/>
KI, .</
s
>
<
s
xml:id
="
echoid-s10501
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10502
"
xml:space
="
preserve
">cum {4/12}. </
s
>
<
s
xml:id
="
echoid-s10503
"
xml:space
="
preserve
">quadrati, KI, quæ
<
lb
/>
ſunt {4/3}. </
s
>
<
s
xml:id
="
echoid-s10504
"
xml:space
="
preserve
">quadrati, LI, .</
s
>
<
s
xml:id
="
echoid-s10505
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10506
"
xml:space
="
preserve
">rectanguli,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0424-01
"
xlink:href
="
note-0424-01a
"
xml:space
="
preserve
">Corol, 21.
<
lb
/>
huius.</
note
>
AZV, vnde rectangulum ſub, AZ,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s10507
"
xml:space
="
preserve
">ſexquitertia, ZV, erit æquale ter-
<
lb
/>
tiæ parti quadrati, kI, erit igitur di-
<
lb
/>
cta ratio compoſita ex ratione pri-
<
lb
/>
mò dicta, & </
s
>
<
s
xml:id
="
echoid-s10508
"
xml:space
="
preserve
">ex ratione fectanguli
<
lb
/>
ſub, RZ, EC, ad quadratum, AV,
<
lb
/>
cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10509
"
xml:space
="
preserve
">quadrati, kI, ſiue cum rectangulo ſub, AZ, & </
s
>
<
s
xml:id
="
echoid-s10510
"
xml:space
="
preserve
">ſexquitertia,
<
lb
/>
ZV, quod oſtendere propoſitum erat.</
s
>
<
s
xml:id
="
echoid-s10511
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div953
"
type
="
section
"
level
="
1
"
n
="
568
">
<
head
xml:id
="
echoid-head593
"
xml:space
="
preserve
">THEOREMA XXVI. PROPOS. XXVII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s10512
"
xml:space
="
preserve
">SI in eadem anteced. </
s
>
<
s
xml:id
="
echoid-s10513
"
xml:space
="
preserve
">Propoſit. </
s
>
<
s
xml:id
="
echoid-s10514
"
xml:space
="
preserve
">figura intelligantur de-
<
lb
/>
ſcriptæ ſectiones, quæ ab Apollonio coniugatæ vo-
<
lb
/>
cantur, quæ ſint, Y & </
s
>
<
s
xml:id
="
echoid-s10515
"
xml:space
="
preserve
">B, HTN, coniugatæ prædictis, FAD,
<
lb
/>
EVC, habentes ſcilicet quadratum tranſuerſi lateris, & </
s
>
<
s
xml:id
="
echoid-s10516
"
xml:space
="
preserve
">T,
<
lb
/>
æquale rectingulo ſub alio tr anſuerſo latere, AV, & </
s
>
<
s
xml:id
="
echoid-s10517
"
xml:space
="
preserve
">linea
<
lb
/>
iuxta qua n poſſunt, ſiue latere recto oppoſitarum ſectionũ,
<
lb
/>
FAD, EVC, & </
s
>
<
s
xml:id
="
echoid-s10518
"
xml:space
="
preserve
">regula ſit DC, latus parallelogrammi, FC,
<
lb
/>
expoſitis primò ſectionibus oppoſiti, FAD, EVC, circum-
<
lb
/>
ſcriptum, æquidiſtans earu nlateri tranſuerſo, AV: </
s
>
<
s
xml:id
="
echoid-s10519
"
xml:space
="
preserve
">Om-
<
lb
/>
nia quadrata, FC, ad omnia quadrata figuræ, FADCVE,
<
lb
/>
demptis omnibus quadratis oppoſitarum hyperbolarum,
<
lb
/>
Y & </
s
>
<
s
xml:id
="
echoid-s10520
"
xml:space
="
preserve
">B HTN, quæ portionibus laterum, FE, DC, inter op-
<
lb
/>
poſitas ſectiones, Y & </
s
>
<
s
xml:id
="
echoid-s10521
"
xml:space
="
preserve
">B HTN, exiſtentium conſtituuntur,
<
lb
/>
erunt vt parallelepipedum ſub dimidia baſis primò expoſi-
<
lb
/>
tarum alterutrius, hyperbolarum, vt ſub, ZC, & </
s
>
<
s
xml:id
="
echoid-s10522
"
xml:space
="
preserve
">ſub </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>