Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
421
422
423
424
425
426
427
428
429
430
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/425.jpg
"
pagenum
="
397
"/>
ſumma genita, id eſt, ut acceleratio deſcriptionis areæ
<
emph
type
="
italics
"/>
CTP,
<
emph.end
type
="
italics
"/>
ſeu
<
lb
/>
<
arrow.to.target
n
="
note426
"/>
incrementum momenti. </
s
>
<
s
>Vis qua Luna circa Terram quieſcentem
<
lb
/>
ad diſtantiam
<
emph
type
="
italics
"/>
TP,
<
emph.end
type
="
italics
"/>
tempore ſuo periodico
<
emph
type
="
italics
"/>
CADBC
<
emph.end
type
="
italics
"/>
dierum 27.
<
lb
/>
<
emph
type
="
italics
"/>
hor.
<
emph.end
type
="
italics
"/>
7.
<
emph
type
="
italics
"/>
min.
<
emph.end
type
="
italics
"/>
43. revolvi poſſet, efficeret ut corpus, tempore
<
emph
type
="
italics
"/>
CT
<
emph.end
type
="
italics
"/>
<
lb
/>
cadendo, deſcriberet longitudinem 1/2
<
emph
type
="
italics
"/>
CT,
<
emph.end
type
="
italics
"/>
& velocitatem ſimul
<
lb
/>
acquireret æqualem velocitati, qua Luna in Orbe ſuo movetur. </
s
>
<
s
>
<
lb
/>
Patet hoc per Corol. </
s
>
<
s
>9. Prop. </
s
>
<
s
>IV. Lib. </
s
>
<
s
>I. </
s
>
<
s
>Cum autem perpen
<
lb
/>
diculum
<
emph
type
="
italics
"/>
Kd
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
TP
<
emph.end
type
="
italics
"/>
demiſſum ſit ipſius
<
emph
type
="
italics
"/>
EL
<
emph.end
type
="
italics
"/>
pars tertia, & ip
<
lb
/>
ſius
<
emph
type
="
italics
"/>
TP
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
ML
<
emph.end
type
="
italics
"/>
in Octantibus pars dimidia, vis
<
emph
type
="
italics
"/>
EL
<
emph.end
type
="
italics
"/>
in Octan
<
lb
/>
tibus, ubi maxima eſt, ſuperabit vim
<
emph
type
="
italics
"/>
ML
<
emph.end
type
="
italics
"/>
in ratione 3 ad 2,
<
lb
/>
adeoque erit ad vim illam, qua Luna tempore ſuo periodico circa
<
lb
/>
Terram quieſcentem revolvi poſſet, ut 100 ad 2/3X17872 1/2 ſeu
<
lb
/>
11915, & tempore
<
emph
type
="
italics
"/>
CT
<
emph.end
type
="
italics
"/>
velocitatem generare deberet quæ eſſet
<
lb
/>
pars (100/11915) velocitatis Lunaris, tempore autem
<
emph
type
="
italics
"/>
CPA
<
emph.end
type
="
italics
"/>
velocitatem
<
lb
/>
majorem generaret in ratione
<
emph
type
="
italics
"/>
CA
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
CT
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
TP.
<
emph.end
type
="
italics
"/>
Exponatur
<
lb
/>
vis maxima
<
emph
type
="
italics
"/>
EL
<
emph.end
type
="
italics
"/>
in Octantibus per aream
<
emph
type
="
italics
"/>
FKXKk
<
emph.end
type
="
italics
"/>
rectangulo
<
lb
/>
1/2
<
emph
type
="
italics
"/>
TPXPp
<
emph.end
type
="
italics
"/>
æqualem. </
s
>
<
s
>Et velocitas, quam vis maxima tempore
<
lb
/>
quovis
<
emph
type
="
italics
"/>
CP
<
emph.end
type
="
italics
"/>
generare poſſet, erit ad velocitatem quam vis omnis
<
lb
/>
minor
<
emph
type
="
italics
"/>
EL
<
emph.end
type
="
italics
"/>
eodem tempore generat, ut rectangulum 1/2
<
emph
type
="
italics
"/>
TPXCP
<
emph.end
type
="
italics
"/>
<
lb
/>
ad aream
<
emph
type
="
italics
"/>
KCGF
<
emph.end
type
="
italics
"/>
: tempore autem toto
<
emph
type
="
italics
"/>
CPA,
<
emph.end
type
="
italics
"/>
velocitates ge
<
lb
/>
nitæ erunt ad invicem ut rectangulum 1/2
<
emph
type
="
italics
"/>
TPXCA
<
emph.end
type
="
italics
"/>
& triangulum
<
lb
/>
<
emph
type
="
italics
"/>
TCG,
<
emph.end
type
="
italics
"/>
ſive ut arcus quadrantalis
<
emph
type
="
italics
"/>
CA
<
emph.end
type
="
italics
"/>
& radius
<
emph
type
="
italics
"/>
TP.
<
emph.end
type
="
italics
"/>
Ideoque
<
lb
/>
(per Prop. </
s
>
<
s
>IX. Lib. </
s
>
<
s
>V. Elem.) velocitas poſterior, toto tempore
<
lb
/>
genita, erit pars (100/11915) velocitatis Lunæ. </
s
>
<
s
>Huic Lunæ velocitati,
<
lb
/>
quæ areæ momento mediocri analoga eſt, addatur & auferatur
<
lb
/>
dimidium velocitatis alterius; & ſi momentum mediocre expona
<
lb
/>
tur per numerum 11915, ſumma 11915+50 ſeu 11965 exhi
<
lb
/>
bebit momentum maximum areæ in Syzygia
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
ac differentia
<
lb
/>
11915-50 ſeu 11865 ejuſdem momentum minimum in Quadra
<
lb
/>
turis. </
s
>
<
s
>Igitur areæ temporibus æqualibus in Syzygiis & Quadra
<
lb
/>
turis deſcriptæ, ſunt ad invicem ut 11965 ad 11865. Ad mo
<
lb
/>
mentum minimum 11865 addatur momentum, quod ſit ad mo
<
lb
/>
mentorum differentiam 100 ut trapezium
<
emph
type
="
italics
"/>
FKCG
<
emph.end
type
="
italics
"/>
ad triangu
<
lb
/>
lum
<
emph
type
="
italics
"/>
TCG
<
emph.end
type
="
italics
"/>
(vel quod perinde eſt, ut quadratum Sinus
<
emph
type
="
italics
"/>
PK
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
quadratum Radii
<
emph
type
="
italics
"/>
TP,
<
emph.end
type
="
italics
"/>
id eſt, ut
<
emph
type
="
italics
"/>
Pd
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
TP
<
emph.end
type
="
italics
"/>
) & ſumma exhi
<
lb
/>
bebit momentum areæ, ubi Luna eſt in loco quovis interme
<
lb
/>
dio
<
emph
type
="
italics
"/>
P.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note425
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note426
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Hæc omnia ita ſe habent, ex Hypotheſi quod Sol & Terra qui
<
lb
/>
eſcunt, & Luna tempore Synodico dierum 27.
<
emph
type
="
italics
"/>
hor.
<
emph.end
type
="
italics
"/>
7.
<
emph
type
="
italics
"/>
min.
<
emph.end
type
="
italics
"/>
43. re
<
lb
/>
volvitur. </
s
>
<
s
>Cum autem periodus Synodica Lunaris vere ſit die-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>