Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
421
(401)
422
(402)
423
(403)
424
(404)
425
(405)
426
(406)
427
(407)
428
(408)
429
(409)
430
(410)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(405)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div953
"
type
="
section
"
level
="
1
"
n
="
568
">
<
p
>
<
s
xml:id
="
echoid-s10522
"
xml:space
="
preserve
">
<
pb
o
="
405
"
file
="
0425
"
n
="
425
"
rhead
="
LIBER V.
"/>
drato, ZS, (quæ habetur, productis, ZC, OI, donec ſibi
<
lb
/>
occurrant, vt in, S,) ad parallelepipedum bis ſub, LT, & </
s
>
<
s
xml:id
="
echoid-s10523
"
xml:space
="
preserve
">
<
lb
/>
quadrato, TO, cum cubo, TO, & </
s
>
<
s
xml:id
="
echoid-s10524
"
xml:space
="
preserve
">amplius @. </
s
>
<
s
xml:id
="
echoid-s10525
"
xml:space
="
preserve
">eiuſdem cubi.</
s
>
<
s
xml:id
="
echoid-s10526
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s10527
"
xml:space
="
preserve
">Producatur, OL, indefinitè, cui occurrat, SG, ducta per, S, ipſi,
<
lb
/>
ZO, æquidiſtans, & </
s
>
<
s
xml:id
="
echoid-s10528
"
xml:space
="
preserve
">occurſus ſit in puncto, G, & </
s
>
<
s
xml:id
="
echoid-s10529
"
xml:space
="
preserve
">per, T, ipſa, MT,
<
lb
/>
æquidiſtans ducatur ipſi, AV, & </
s
>
<
s
xml:id
="
echoid-s10530
"
xml:space
="
preserve
">per, V, VM, æquidiſtans ipſi, V
<
lb
/>
T, quæ tangent ſectiones in punctis, VT, & </
s
>
<
s
xml:id
="
echoid-s10531
"
xml:space
="
preserve
">conuenient interſe
<
lb
/>
in aſymptoto, OS, vt in, M, vt ex pri. </
s
>
<
s
xml:id
="
echoid-s10532
"
xml:space
="
preserve
">Secundi Conicorum elici
<
lb
/>
poteſt: </
s
>
<
s
xml:id
="
echoid-s10533
"
xml:space
="
preserve
">Omnia ergo quadrata, FC, ad omnia quadrata figuræ,
<
lb
/>
FADCVE, vel omnia quadrata, RC, ad omnia quadrata figuræ,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0425-01
"
xlink:href
="
note-0425-01a
"
xml:space
="
preserve
">21. huius.</
note
>
DAVC, ſunt vt quadratum, DC, ad quadratum, AV, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10534
"
xml:space
="
preserve
">qua-
<
lb
/>
drati, kI, ſiue vt quadratum, CL, ad quadratum, OV, vel, TM,
<
lb
/>
cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10535
"
xml:space
="
preserve
">quadrati, LI, quia verò quadratum, CL, vel, SG, ad qua-
<
lb
/>
dratum, MT, eſt vt quadratum, GO, ad quadratum, OT, & </
s
>
<
s
xml:id
="
echoid-s10536
"
xml:space
="
preserve
">qua-
<
lb
/>
dratum, GS, ad quadratum, LI, eſt vt quadratum, GO, ad quadra-
<
lb
/>
tum, OL, ideo quadratum, SG, ad quadratum, TM, vel, OV, cum
<
lb
/>
{1/3}. </
s
>
<
s
xml:id
="
echoid-s10537
"
xml:space
="
preserve
">quadrati, LI, erit vt quadratum, GO, ad quadratum, OT, cum
<
lb
/>
{1/3}. </
s
>
<
s
xml:id
="
echoid-s10538
"
xml:space
="
preserve
">quadrati, OL, ſiue vt triplum quadrat, GO, ad quadratum, LO,
<
lb
/>
cum tribus quadratis, OT, vel ſumpta, ’LO, communi altitudine,
<
lb
/>
vt parallelepipedum ſub, LO, & </
s
>
<
s
xml:id
="
echoid-s10539
"
xml:space
="
preserve
">triplo quadrati, OG, ad paralle-
<
lb
/>
le ipedum ſub, LO, & </
s
>
<
s
xml:id
="
echoid-s10540
"
xml:space
="
preserve
">quadrato, OL, cum triplo quadrati, OT,
<
lb
/>
ſic igitur erunt omnia quadrata, RC, ad omnia quadrata figuræ,
<
lb
/>
DAVC, quod ſerua.</
s
>
<
s
xml:id
="
echoid-s10541
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s10542
"
xml:space
="
preserve
">Inſuper omnia quadrata, RC, ad omnia quadrata trianguli, K
<
lb
/>
OI, ſunt vt quadratum, DC, ad {1/3}. </
s
>
<
s
xml:id
="
echoid-s10543
"
xml:space
="
preserve
">quadrati, kI, vel vt quadratum,
<
lb
/>
CL, vel quadratum, GS, ad {1/3}. </
s
>
<
s
xml:id
="
echoid-s10544
"
xml:space
="
preserve
">quadrati, LI, vel vt quadratum, G
<
lb
/>
O, ad {1/3}. </
s
>
<
s
xml:id
="
echoid-s10545
"
xml:space
="
preserve
">quadrati, OL, vel vt trip um quadrati, GO, ad quadra-
<
lb
/>
tum, OL, Vel, ſump@@, OL, communi altitudine, vt parallelepipe-
<
lb
/>
dum ſub, LO, & </
s
>
<
s
xml:id
="
echoid-s10546
"
xml:space
="
preserve
">triplo quadrati, CG, ad parallelepipedum ſub L
<
lb
/>
O, & </
s
>
<
s
xml:id
="
echoid-s10547
"
xml:space
="
preserve
">quadrato, LO, .</
s
>
<
s
xml:id
="
echoid-s10548
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10549
"
xml:space
="
preserve
">ad cubum, LO. </
s
>
<
s
xml:id
="
echoid-s10550
"
xml:space
="
preserve
">Vlterius omnia quadra
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0425-02
"
xlink:href
="
note-0425-02a
"
xml:space
="
preserve
">9. huius.</
note
>
ta trianguli, KOI, ad omnia quadrata hyperbolæ, HTN, ſunt vt
<
lb
/>
cubus, LO, ad parallelepipedum ter ſub, OT, & </
s
>
<
s
xml:id
="
echoid-s10551
"
xml:space
="
preserve
">quadrato, TL, cũ
<
lb
/>
cubo, TL, ergo, ex æquali, omnia quadrata, RC, ad omnia qua-
<
lb
/>
drata hyperbolæ, HTN, erunt vt parallelepipedum ſub, LO, & </
s
>
<
s
xml:id
="
echoid-s10552
"
xml:space
="
preserve
">
<
lb
/>
triplo quadrati, OG, ad parallelepipedum ter ſub, OT, & </
s
>
<
s
xml:id
="
echoid-s10553
"
xml:space
="
preserve
">qua-
<
lb
/>
drato, TL, cum cubo, TL, erant autem omnia quadrata, RC, ad
<
lb
/>
omnia quadrata figurę, DAVC, vt idem parallelepipedum ſub, L
<
lb
/>
O, & </
s
>
<
s
xml:id
="
echoid-s10554
"
xml:space
="
preserve
">triplo quadrati, OG, ad parallelepipedum ſub, LO, & </
s
>
<
s
xml:id
="
echoid-s10555
"
xml:space
="
preserve
">qua-
<
lb
/>
drato, OL, cuin triplo quadrati, OT, ergo omnia quadrata, RC,
<
lb
/>
ad omnia quadrata figuræ, DAVC, demptis omnibus </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>