Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
421
(401)
422
(402)
423
(403)
424
(404)
425
(405)
426
(406)
427
(407)
428
(408)
429
(409)
430
(410)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(408)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div956
"
type
="
section
"
level
="
1
"
n
="
569
">
<
p
>
<
s
xml:id
="
echoid-s10608
"
xml:space
="
preserve
">
<
pb
o
="
408
"
file
="
0428
"
n
="
428
"
rhead
="
GEOMETRIÆ
"/>
{1/3}. </
s
>
<
s
xml:id
="
echoid-s10609
"
xml:space
="
preserve
">cubi eiuſdem reliquæ. </
s
>
<
s
xml:id
="
echoid-s10610
"
xml:space
="
preserve
">Producantur, FI, EO, hinc inde vſq; </
s
>
<
s
xml:id
="
echoid-s10611
"
xml:space
="
preserve
">ad
<
lb
/>
latera, TX, XV, VR, RT, quibus occurrant in punctis, &</
s
>
<
s
xml:id
="
echoid-s10612
"
xml:space
="
preserve
">, Z, Y,
<
lb
/>
<
figure
xlink:label
="
fig-0428-01
"
xlink:href
="
fig-0428-01a
"
number
="
289
">
<
image
file
="
0428-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0428-01
"/>
</
figure
>
G, in quibus illa bifariam diui-
<
lb
/>
duntur, & </
s
>
<
s
xml:id
="
echoid-s10613
"
xml:space
="
preserve
">per, Q, ducatur, QK,
<
lb
/>
ęequidiſtans ipſi, RV: </
s
>
<
s
xml:id
="
echoid-s10614
"
xml:space
="
preserve
">Omnia
<
lb
/>
igitur quadrata parallelogram-
<
lb
/>
mi, SV, ad omnia quadrata ſigu
<
lb
/>
rę, SIQK, habent rationem com-
<
lb
/>
poſitam ex ea, quam habent om-
<
lb
/>
nia quadrata, SV, ad omnia qua-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0428-01
"
xlink:href
="
note-0428-01a
"
xml:space
="
preserve
">Defin, 12.
<
lb
/>
11.</
note
>
drata, SQ, .</
s
>
<
s
xml:id
="
echoid-s10615
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10616
"
xml:space
="
preserve
">ex ratione, YS, ad,
<
lb
/>
Sk, & </
s
>
<
s
xml:id
="
echoid-s10617
"
xml:space
="
preserve
">ex ratione omnium qua-
<
lb
/>
dratorum, SQ, ad omnia qua-
<
lb
/>
drata figurę, SIQk, .</
s
>
<
s
xml:id
="
echoid-s10618
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10619
"
xml:space
="
preserve
">ex ratione
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0428-02
"
xlink:href
="
note-0428-02a
"
xml:space
="
preserve
">10. l. 2,
<
lb
/>
21. huius.</
note
>
quadrati, KQ, ad quadratum, SI,
<
lb
/>
cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10620
"
xml:space
="
preserve
">quadrati, kD, .</
s
>
<
s
xml:id
="
echoid-s10621
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10622
"
xml:space
="
preserve
">exra-
<
lb
/>
tione quadrati, YS, ad quadratũ
<
lb
/>
SO, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10623
"
xml:space
="
preserve
">quadrati, SK, duę
<
lb
/>
autem rationes, YS, ad, Sk, & </
s
>
<
s
xml:id
="
echoid-s10624
"
xml:space
="
preserve
">
<
lb
/>
quadrati, YS, ad quadratum, SO, Cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10625
"
xml:space
="
preserve
">quadrati, Sk, componũt
<
lb
/>
rationem cubi, YS, ad parallelepipedum ſub, KS, & </
s
>
<
s
xml:id
="
echoid-s10626
"
xml:space
="
preserve
">compoſito ex
<
lb
/>
quadrato, SO, & </
s
>
<
s
xml:id
="
echoid-s10627
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10628
"
xml:space
="
preserve
">quadrati, Sk, ergo omnia quadrata, SV, ad
<
lb
/>
omnia quadrata figurę SIQk, erunt vt cubus, YS, ad parallelepi-
<
lb
/>
pedum ſub, kS, & </
s
>
<
s
xml:id
="
echoid-s10629
"
xml:space
="
preserve
">compoſito ex quadrato, SO, & </
s
>
<
s
xml:id
="
echoid-s10630
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10631
"
xml:space
="
preserve
">quadrati, Sk:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s10632
"
xml:space
="
preserve
">Omnia item quadrata, SV, ad omnia quadrata, kV, ſunt vt, SY,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0428-03
"
xlink:href
="
note-0428-03a
"
xml:space
="
preserve
">10. l. 2.</
note
>
ad, Yk, .</
s
>
<
s
xml:id
="
echoid-s10633
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10634
"
xml:space
="
preserve
">ſumpta communi baſi quadrato, SY, vt cubus, SY, ad
<
lb
/>
parallelepipedum ſub, Yk, & </
s
>
<
s
xml:id
="
echoid-s10635
"
xml:space
="
preserve
">quadrato, YS, ergo omnia quadrata’
<
lb
/>
SV, ad omnia quadrata figuræ, SIQk, & </
s
>
<
s
xml:id
="
echoid-s10636
"
xml:space
="
preserve
">parallelogrammi, kV, .</
s
>
<
s
xml:id
="
echoid-s10637
"
xml:space
="
preserve
">i.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s10638
"
xml:space
="
preserve
">ad omnia quadrata figuræ, SIQVY, erunt vt cubus, YS, ad paral-
<
lb
/>
lelepipedum ſub, kY, & </
s
>
<
s
xml:id
="
echoid-s10639
"
xml:space
="
preserve
">quadrato, YS, vna cum parallelepipedo
<
lb
/>
ſub, kS, & </
s
>
<
s
xml:id
="
echoid-s10640
"
xml:space
="
preserve
">compoſito ex quadrato, SO, & </
s
>
<
s
xml:id
="
echoid-s10641
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10642
"
xml:space
="
preserve
">quadrati, Sk: </
s
>
<
s
xml:id
="
echoid-s10643
"
xml:space
="
preserve
">Quo-
<
lb
/>
niam verò omnia quadrata, SV, ſunt tripla omnium quadratorũ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0428-04
"
xlink:href
="
note-0428-04a
"
xml:space
="
preserve
">24. l. 2.</
note
>
trianguli, SYV, hæc verò ad omnia quadrata ſemihyperbolæ, OY
<
lb
/>
N, ſunt vt cubus, SY, ad parallelepipedum ter ſub, SQ, & </
s
>
<
s
xml:id
="
echoid-s10644
"
xml:space
="
preserve
">quadra-
<
lb
/>
to, OY, cum cubo, OY, ideò omnia quadrata, SV, ad omnia qua-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0428-05
"
xlink:href
="
note-0428-05a
"
xml:space
="
preserve
">9. huius.</
note
>
drata ſemihyperbolæ, YON, erunt vt tres cubi, SY, ad parallele-
<
lb
/>
pipedum ter ſub, SO, & </
s
>
<
s
xml:id
="
echoid-s10645
"
xml:space
="
preserve
">quadrato, OY, cum cubo, OY, .</
s
>
<
s
xml:id
="
echoid-s10646
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10647
"
xml:space
="
preserve
">vt cu-
<
lb
/>
bus, SY, ad parallelepipedum ſub, SO, & </
s
>
<
s
xml:id
="
echoid-s10648
"
xml:space
="
preserve
">quadrato, OY, cum {1/3}.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s10649
"
xml:space
="
preserve
">cubi, OY; </
s
>
<
s
xml:id
="
echoid-s10650
"
xml:space
="
preserve
">erant autem omnia quadrata, SV, ad omnia quadrata
<
lb
/>
figuræ, SIQVY, vt cubus, SY, ad parallelepipedum ſub, kY, & </
s
>
<
s
xml:id
="
echoid-s10651
"
xml:space
="
preserve
">
<
lb
/>
quadrato, YS, vna cum parallelepipedo ſub, kS, & </
s
>
<
s
xml:id
="
echoid-s10652
"
xml:space
="
preserve
">compoſito </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>