Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
421
(401)
422
(402)
423
(403)
424
(404)
425
(405)
426
(406)
427
(407)
428
(408)
429
(409)
430
(410)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(410)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div959
"
type
="
section
"
level
="
1
"
n
="
571
">
<
p
>
<
s
xml:id
="
echoid-s10685
"
xml:space
="
preserve
">
<
pb
o
="
410
"
file
="
0430
"
n
="
430
"
rhead
="
GEOMETRIÆ
"/>
ΦΙΛ, 9F7, à parallelogrammo, βΩ, ablatis ab ijſdem om-
<
lb
/>
nibus quadratis oppoſitarum hyperbolarum, LΕΓ, ΣΟ3,
<
lb
/>
quæ dicatur figura parallelogrammi, βΩ, eſſe vt paralle-
<
lb
/>
lepipedum ſub, QV, & </
s
>
<
s
xml:id
="
echoid-s10686
"
xml:space
="
preserve
">quadrato. </
s
>
<
s
xml:id
="
echoid-s10687
"
xml:space
="
preserve
">VZ, vna cum parallelepi-
<
lb
/>
pedo ſub, QZ, & </
s
>
<
s
xml:id
="
echoid-s10688
"
xml:space
="
preserve
">compoſito ex quadrato, SO, & </
s
>
<
s
xml:id
="
echoid-s10689
"
xml:space
="
preserve
">@. </
s
>
<
s
xml:id
="
echoid-s10690
"
xml:space
="
preserve
">quadra-
<
lb
/>
ti, QZ, ab his dempto parallelepipedo ſub, SO, & </
s
>
<
s
xml:id
="
echoid-s10691
"
xml:space
="
preserve
">quadra-
<
lb
/>
to, OY, & </
s
>
<
s
xml:id
="
echoid-s10692
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10693
"
xml:space
="
preserve
">cubi, OY, ad parallelepipedum ſub, ΛΩ, & </
s
>
<
s
xml:id
="
echoid-s10694
"
xml:space
="
preserve
">
<
lb
/>
quadrato, Ω4, vna cum parallelepipedo ſub, Λ4, & </
s
>
<
s
xml:id
="
echoid-s10695
"
xml:space
="
preserve
">com-
<
lb
/>
poſito ex quadrato, SO, & </
s
>
<
s
xml:id
="
echoid-s10696
"
xml:space
="
preserve
">@. </
s
>
<
s
xml:id
="
echoid-s10697
"
xml:space
="
preserve
">quadrati, Λ4, dempto paral-
<
lb
/>
lelepipedo ſub, SO, & </
s
>
<
s
xml:id
="
echoid-s10698
"
xml:space
="
preserve
">quadrato, O6, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10699
"
xml:space
="
preserve
">cubi, O6.</
s
>
<
s
xml:id
="
echoid-s10700
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s10701
"
xml:space
="
preserve
">Nam omnia quadrata figuræ parallelogrammi, TV, demptis
<
lb
/>
iam dictis, ad omnia quadrata figuræ parallelogrammi, βΩ, dem-
<
lb
/>
ptis iam dictis, habent rationem compoſitam ex ratione omniũ
<
lb
/>
quadratorum primo dictæ figuræ, demptis, &</
s
>
<
s
xml:id
="
echoid-s10702
"
xml:space
="
preserve
">c. </
s
>
<
s
xml:id
="
echoid-s10703
"
xml:space
="
preserve
">ad omnia qua-
<
lb
/>
drata, TV, .</
s
>
<
s
xml:id
="
echoid-s10704
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10705
"
xml:space
="
preserve
">ex ea, quam habet parallelepipedum ſub, QV, & </
s
>
<
s
xml:id
="
echoid-s10706
"
xml:space
="
preserve
">
<
lb
/>
quadrato, VZ, vna cum parallelepipedo ſub, QZ, & </
s
>
<
s
xml:id
="
echoid-s10707
"
xml:space
="
preserve
">compoſita
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0430-01
"
xlink:href
="
note-0430-01a
"
xml:space
="
preserve
">Exantec.</
note
>
ex quadrato, OS, & </
s
>
<
s
xml:id
="
echoid-s10708
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10709
"
xml:space
="
preserve
">quadrati, QZ, dempto ab his parallelepi-
<
lb
/>
pedo ſub, SO, & </
s
>
<
s
xml:id
="
echoid-s10710
"
xml:space
="
preserve
">quadrato, OY, & </
s
>
<
s
xml:id
="
echoid-s10711
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10712
"
xml:space
="
preserve
">cubi, OY, ad cubum, ZV, itẽ
<
lb
/>
ex ratione omnium quadratorum, TV, ad omnia quadrata, βΩ,
<
lb
/>
ideſt ex ratione cubi, VZ, ad cubum, Ω4, quia parallelogramma,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0430-02
"
xlink:href
="
note-0430-02a
"
xml:space
="
preserve
">3. l. 2.</
note
>
TV, βΩ, ſunt ſimilia, cum ſint circa eandem diametrum, & </
s
>
<
s
xml:id
="
echoid-s10713
"
xml:space
="
preserve
">tandẽ
<
lb
/>
ex ratione omnium quadratorum, βΩ, ad omnia quadrata figuræ
<
lb
/>
parallelogrammi, βΩ, demptis iam dictis, .</
s
>
<
s
xml:id
="
echoid-s10714
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s10715
"
xml:space
="
preserve
">ex ratione cubi, Ω4,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0430-03
"
xlink:href
="
note-0430-03a
"
xml:space
="
preserve
">Exantec.</
note
>
ad parallelepipedum ſub, ΛΩ, & </
s
>
<
s
xml:id
="
echoid-s10716
"
xml:space
="
preserve
">quadrato, Ω4, vna cum paralle-
<
lb
/>
lepipedo ſub, Λ4, & </
s
>
<
s
xml:id
="
echoid-s10717
"
xml:space
="
preserve
">compoſito ex quadrato, SO, & </
s
>
<
s
xml:id
="
echoid-s10718
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10719
"
xml:space
="
preserve
">quadrati,
<
lb
/>
Λ4, ab his dempto parallelepipedo ſub, SO, & </
s
>
<
s
xml:id
="
echoid-s10720
"
xml:space
="
preserve
">quadrato, O6, vna
<
lb
/>
cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10721
"
xml:space
="
preserve
">cubi, O6, rationes autem parallelepipedorum primò dicto-
<
lb
/>
rum, dempto parallelepipedo ſub, SO, & </
s
>
<
s
xml:id
="
echoid-s10722
"
xml:space
="
preserve
">quadrato, OY, cum {1/3}.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s10723
"
xml:space
="
preserve
">cubi, OY, ad cubum, ZV, cubi, ZV, ad cubum, Ω4, & </
s
>
<
s
xml:id
="
echoid-s10724
"
xml:space
="
preserve
">cubi, Ω4,
<
lb
/>
ad parallelepipeda poſtremò dicta, dempto parallerepipedo ſub, S
<
lb
/>
O, & </
s
>
<
s
xml:id
="
echoid-s10725
"
xml:space
="
preserve
">quadrato, O6, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s10726
"
xml:space
="
preserve
">cubi, O6, componunt rationem pa-
<
lb
/>
rallelepipedorum primò dictorum, dempto iam dicto ad parallele-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0430-04
"
xlink:href
="
note-0430-04a
"
xml:space
="
preserve
">Deſin. 12.
<
lb
/>
l. 1.</
note
>
pipeda poſtremò dicta, dempto iam dicto, ergo omnia quadrata
<
lb
/>
figuræ parallelogrammi, TV, demptis omnibus quadratis oppoſi-
<
lb
/>
tarum hyperbolarum, AEC, MON, ad omnia quadrata figuræ
<
lb
/>
parallelogrammi, βΩ, demptis omnibus quadratis oppoſitarum
<
lb
/>
hyperbolarum, LEI, ΣΟ3, erunt vt parallelepipedum ſub, QV,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s10727
"
xml:space
="
preserve
">quadrato, VZ, vna cum parallelepipedo ſub, QZ, & </
s
>
<
s
xml:id
="
echoid-s10728
"
xml:space
="
preserve
">compoſi-
<
lb
/>
to ex quadrato, SO, & </
s
>
<
s
xml:id
="
echoid-s10729
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s10730
"
xml:space
="
preserve
">quadrati, QZ, ab his dempto </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>