Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
441
442
443
444
445
446
447
448
449
450
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/441.jpg
"
pagenum
="
413
"/>
tus medius Nodorum circulo toti reſpondens. </
s
>
<
s
>Et motus Nodo
<
lb
/>
<
arrow.to.target
n
="
note442
"/>
rum, quo tempore Sol pergit ab
<
emph
type
="
italics
"/>
N
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
eſt ad 19
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
49′. </
s
>
<
s
>3″. </
s
>
<
s
>55′. </
s
>
<
s
>
<
lb
/>
ut area
<
emph
type
="
italics
"/>
NAZ
<
emph.end
type
="
italics
"/>
ad circulum totum. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note442
"/>
LIBER.
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Hæc ita ſe habent, ex Hypotheſi quod Nodus horis ſingulis in
<
lb
/>
locum priorem retrahitur, lic ut Sol anno toto completo ad No
<
lb
/>
dum eundem redeat a quo ſub initio digreſſus fuerat. </
s
>
<
s
>Verum per
<
lb
/>
motum Nodi fit ut Sol citius ad Nodum revertatur, & compu
<
lb
/>
tanda jam eſt abbreviatio temporis. </
s
>
<
s
>Cum Sol anno toto conficiat
<
lb
/>
360 gradus, & Nodus motu maximo eodem tempore conficeret
<
lb
/>
39
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
38′. </
s
>
<
s
>7″. </
s
>
<
s
>50′, ſeu 39,6355 gradus; & motus mediocris. </
s
>
<
s
>Nodi
<
lb
/>
in loco quovis
<
emph
type
="
italics
"/>
N
<
emph.end
type
="
italics
"/>
ſit ad ipſius motum mediocrem in Quadraturis
<
lb
/>
ſuis, ut
<
emph
type
="
italics
"/>
AZq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
ATq
<
emph.end
type
="
italics
"/>
: erit motus Solis ad motum Nodi in
<
emph
type
="
italics
"/>
N,
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
360
<
emph
type
="
italics
"/>
ATq
<
emph.end
type
="
italics
"/>
ad 39,6355
<
emph
type
="
italics
"/>
AZq
<
emph.end
type
="
italics
"/>
; id eſt, ut 9,0827646
<
emph
type
="
italics
"/>
ATq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
<
expan
abbr
="
AZq.
">AZque</
expan
>
<
emph.end
type
="
italics
"/>
<
lb
/>
Unde ſi circuli totius circumferentia
<
emph
type
="
italics
"/>
NAn
<
emph.end
type
="
italics
"/>
dividatur in particu
<
lb
/>
las æquales
<
emph
type
="
italics
"/>
Aa,
<
emph.end
type
="
italics
"/>
tempus quo Sol percurrat particulam
<
emph
type
="
italics
"/>
Aa,
<
emph.end
type
="
italics
"/>
ſi cir
<
lb
/>
culus quieſceret, erit ad tempus quo percurrit eandem parti
<
lb
/>
culam, ſi circulus una cum Nodis circa centrum
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
revolvatur,
<
lb
/>
reciproce ut 9,0827646
<
emph
type
="
italics
"/>
<
expan
abbr
="
ATq.
">ATque</
expan
>
<
emph.end
type
="
italics
"/>
ad 9,0827646
<
emph
type
="
italics
"/>
<
expan
abbr
="
ATq+AZq.
">ATq+AZque</
expan
>
<
emph.end
type
="
italics
"/>
Nam
<
lb
/>
tempus eſt reciproce ut velocitas qua particula percurritur, &
<
lb
/>
hæc velocitas eſt ſumma velocitatum Solis & Nodi. </
s
>
<
s
>Igitur ſi tem
<
lb
/>
pus, quo Sol abſque motu Nodi percurreret arcum
<
emph
type
="
italics
"/>
NA,
<
emph.end
type
="
italics
"/>
expo
<
lb
/>
natur per Sectorem
<
emph
type
="
italics
"/>
NTA,
<
emph.end
type
="
italics
"/>
& particula temporis quo percurreret. </
s
>
<
s
>
<
lb
/>
arcum quam minimum
<
emph
type
="
italics
"/>
Aa,
<
emph.end
type
="
italics
"/>
exponatur per Sectoris particulam
<
lb
/>
<
emph
type
="
italics
"/>
ATa
<
emph.end
type
="
italics
"/>
; & (perpendiculo
<
emph
type
="
italics
"/>
aY
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
Nn
<
emph.end
type
="
italics
"/>
demiſſo) ſi in
<
emph
type
="
italics
"/>
AZ
<
emph.end
type
="
italics
"/>
capiatur
<
lb
/>
<
emph
type
="
italics
"/>
dZ,
<
emph.end
type
="
italics
"/>
ejus longitudinis ut ſit rectangulum
<
emph
type
="
italics
"/>
dZ
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
ZY
<
emph.end
type
="
italics
"/>
ad Sectoris
<
lb
/>
particulam
<
emph
type
="
italics
"/>
ATa
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
AZq
<
emph.end
type
="
italics
"/>
ad 9,0827646
<
emph
type
="
italics
"/>
ATq+AZq,
<
emph.end
type
="
italics
"/>
id eſt, ut
<
lb
/>
ſit
<
emph
type
="
italics
"/>
dZ
<
emph.end
type
="
italics
"/>
ad 1/2
<
emph
type
="
italics
"/>
AZ
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
ATq
<
emph.end
type
="
italics
"/>
ad 9,0827646
<
emph
type
="
italics
"/>
ATq+AZq
<
emph.end
type
="
italics
"/>
; rectangu
<
lb
/>
lum
<
emph
type
="
italics
"/>
dZ
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
ZY
<
emph.end
type
="
italics
"/>
deſignabit decrementum temporis ex motu Nodi
<
lb
/>
oriundum, tempore toto quo arcus
<
emph
type
="
italics
"/>
Aa
<
emph.end
type
="
italics
"/>
percurritur. </
s
>
<
s
>Et ſi pun
<
lb
/>
ctum
<
emph
type
="
italics
"/>
d
<
emph.end
type
="
italics
"/>
tangit Curvam
<
emph
type
="
italics
"/>
NdGn,
<
emph.end
type
="
italics
"/>
area curvilinea
<
emph
type
="
italics
"/>
NdZ
<
emph.end
type
="
italics
"/>
erit decre
<
lb
/>
mentum totum, quo tempore arcus totus
<
emph
type
="
italics
"/>
NA
<
emph.end
type
="
italics
"/>
percurritur; &
<
lb
/>
propterea exceſſus Sectoris
<
emph
type
="
italics
"/>
NAT
<
emph.end
type
="
italics
"/>
ſupra aream
<
emph
type
="
italics
"/>
NdZ
<
emph.end
type
="
italics
"/>
erit tempus
<
lb
/>
illud totum. </
s
>
<
s
>Et quoniam motus Nodi tempore minore minor eſt
<
lb
/>
in ratione temporis, debebit etiam area
<
emph
type
="
italics
"/>
AaYZ
<
emph.end
type
="
italics
"/>
diminui in eadem
<
lb
/>
ratione. </
s
>
<
s
>Id quod fiet ſi capiatur in
<
emph
type
="
italics
"/>
AZ
<
emph.end
type
="
italics
"/>
longitudo
<
emph
type
="
italics
"/>
eZ,
<
emph.end
type
="
italics
"/>
quæ ſit
<
lb
/>
ad longitudinem
<
emph
type
="
italics
"/>
AZ
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
AZq
<
emph.end
type
="
italics
"/>
ad 9,0827646
<
emph
type
="
italics
"/>
<
expan
abbr
="
ATq+AZq.
">ATq+AZque</
expan
>
<
emph.end
type
="
italics
"/>
Sic
<
lb
/>
enim rectangulum
<
emph
type
="
italics
"/>
eZ
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
ZY
<
emph.end
type
="
italics
"/>
erit ad aream
<
emph
type
="
italics
"/>
AZYa
<
emph.end
type
="
italics
"/>
ut decremen
<
lb
/>
tum temporis quo arcus
<
emph
type
="
italics
"/>
Aa
<
emph.end
type
="
italics
"/>
percurritur, ad tempus totum quo
<
lb
/>
percurreretur ſi Nodus quieſceret: Et propterea rectangulum illud
<
lb
/>
reſpondebit decremento motus Nodi. </
s
>
<
s
>Et ſi punctum
<
emph
type
="
italics
"/>
e
<
emph.end
type
="
italics
"/>
tangat </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>