Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
441
442
443
444
445
446
447
448
449
450
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/446.jpg
"
pagenum
="
418
"/>
<
arrow.to.target
n
="
note447
"/>
eſt (cum
<
emph
type
="
italics
"/>
Pp
<
emph.end
type
="
italics
"/>
ſit ad
<
emph
type
="
italics
"/>
PG
<
emph.end
type
="
italics
"/>
ut ſinus Inclinationis prædictæ ad ra
<
lb
/>
dium, & (
<
emph
type
="
italics
"/>
AZXTZ/1/2AT
<
emph.end
type
="
italics
"/>
) ſit ad 4
<
emph
type
="
italics
"/>
AT
<
emph.end
type
="
italics
"/>
ut ſinus duplicati anguli
<
emph
type
="
italics
"/>
ATn
<
emph.end
type
="
italics
"/>
<
lb
/>
ad radium quadruplicatum) ut Inclinationis ejuſdem ſinus ductus
<
lb
/>
in ſinum duplicatæ diſtantiæ Nodorum a Sole, ad quadruplum
<
lb
/>
quadratum radii. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note447
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
4. Quoniam Inclinationis horaria Variatio, ubi Nodi in
<
lb
/>
Quadraturis verſantur, eſt (per hanc Propoſitionem) ad angu
<
lb
/>
lum 33″. </
s
>
<
s
>10′. </
s
>
<
s
>33
<
emph
type
="
sup
"/>
iv
<
emph.end
type
="
sup
"/>
ut
<
emph
type
="
italics
"/>
ITXAZXTGX(Pp/PG)
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
ATcub.
<
emph.end
type
="
italics
"/>
id eſt,
<
lb
/>
ut
<
emph
type
="
italics
"/>
(ITXTG/1/2AT)X(Pp/PG)
<
emph.end
type
="
italics
"/>
ad 2
<
emph
type
="
italics
"/>
AT
<
emph.end
type
="
italics
"/>
; hoc eſt, ut ſinus duplicatæ di
<
lb
/>
ſtantiæ Lunæ à Quadraturis ductus in (
<
emph
type
="
italics
"/>
Pp/PG
<
emph.end
type
="
italics
"/>
) ad radium duplica
<
lb
/>
tum: ſumma omnium Variationum horariarum, quo tempore
<
lb
/>
Luna in hoc ſitu Nodorum tranſit à Quadratura ad Syzygiam,
<
lb
/>
(id eſt, ſpatio horarum 177 1/6,) erit ad ſummam totidem angulo
<
lb
/>
rum 33″. </
s
>
<
s
>10′. </
s
>
<
s
>33
<
emph
type
="
sup
"/>
iv
<
emph.end
type
="
sup
"/>
, ſeu 5878″, ut ſumma omnium ſinuum dupli
<
lb
/>
catæ diſtantiæ Lunæ à Quadraturis ducta in (
<
emph
type
="
italics
"/>
Pp/PG
<
emph.end
type
="
italics
"/>
) ad ſummam to
<
lb
/>
tidem diametrorum; hoc eſt, ut diameter ducta in (
<
emph
type
="
italics
"/>
Pp/PG
<
emph.end
type
="
italics
"/>
) ad cir
<
lb
/>
cumferentiam; id eſt, ſi Inclinatio ſit 5
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
1′, ut 7X(874/10000) ad 22,
<
lb
/>
ſeu 278 ad 10000. Proindeque Variatio tota, ex ſumma om
<
lb
/>
nium horariarum Variationum tempore prædicto conflata, eſt
<
lb
/>
163″, ſeu 2′. </
s
>
<
s
>43″. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XXXV. PROBLEMA XVI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Dato tempore invenire Inclinationem Orbis Lunaris ad planum
<
lb
/>
Eclipticæ.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Sit
<
emph
type
="
italics
"/>
AD
<
emph.end
type
="
italics
"/>
ſinus Inclinationis maximæ, &
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
ſinus Inclinatio
<
lb
/>
nis minimæ. </
s
>
<
s
>Biſecetur
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
& centro
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
intervallo
<
emph
type
="
italics
"/>
BC,
<
emph.end
type
="
italics
"/>
<
lb
/>
deſcribatur Circulus
<
emph
type
="
italics
"/>
BGD.
<
emph.end
type
="
italics
"/>
In
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
capiatur
<
emph
type
="
italics
"/>
CE
<
emph.end
type
="
italics
"/>
in ea ratione
<
lb
/>
ad
<
emph
type
="
italics
"/>
EB
<
emph.end
type
="
italics
"/>
quam
<
emph
type
="
italics
"/>
EB
<
emph.end
type
="
italics
"/>
habet ad 2
<
emph
type
="
italics
"/>
BA:
<
emph.end
type
="
italics
"/>
Et ſi dato tempore conſti
<
lb
/>
tuatur angulus
<
emph
type
="
italics
"/>
AEG
<
emph.end
type
="
italics
"/>
æqualis duplicatæ diſtantiæ Nodorum à </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>