Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
441
(421)
442
(422)
443
(423)
444
(424)
445
(425)
446
(426)
447
(427)
448
(428)
449
(429)
450
(428)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(429)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1025
"
type
="
section
"
level
="
1
"
n
="
616
">
<
pb
o
="
429
"
file
="
0449
"
n
="
449
"
rhead
="
LIBER VI.
"/>
</
div
>
<
div
xml:id
="
echoid-div1026
"
type
="
section
"
level
="
1
"
n
="
617
">
<
head
xml:id
="
echoid-head647
"
xml:space
="
preserve
">THEOREMA I. PROPOS. I.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11188
"
xml:space
="
preserve
">CIrculorum æqualium, necnon ſectorum æqualium,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s11189
"
xml:space
="
preserve
">ab eodem, vel æqualibus circulis abſciſſorum,
<
lb
/>
omnes circumferentiæ ſunt æquales.</
s
>
<
s
xml:id
="
echoid-s11190
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11191
"
xml:space
="
preserve
">Hæc Propoſitio facilè per ſuperpoſitionem oſtendetur. </
s
>
<
s
xml:id
="
echoid-s11192
"
xml:space
="
preserve
">Si
<
lb
/>
enim circuli æquales ad inuicem ſuperponantur, ita vt centrum
<
lb
/>
centro congruat, etiam ipſi circuli congruent, cum ſupponantur
<
lb
/>
æquales, vnde & </
s
>
<
s
xml:id
="
echoid-s11193
"
xml:space
="
preserve
">eorum radij ſint æquales, congruentibus autem
<
lb
/>
circulis, etiam omnes vnius circumferentiæ congruent omnibus
<
lb
/>
alterius circumferentijs, & </
s
>
<
s
xml:id
="
echoid-s11194
"
xml:space
="
preserve
">ideò inter ſe æquales erunt. </
s
>
<
s
xml:id
="
echoid-s11195
"
xml:space
="
preserve
">Eadem
<
lb
/>
pariter ſuperpoſitionis adhibita via, oſtendemus ſectorum æqua-
<
lb
/>
lium, ab eodem, vel æqualibus circulis abſciſſorum omnes circum-
<
lb
/>
ferentias inter ſe æquales eſſe, quod erat demonſtrandum.</
s
>
<
s
xml:id
="
echoid-s11196
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1027
"
type
="
section
"
level
="
1
"
n
="
618
">
<
head
xml:id
="
echoid-head648
"
xml:space
="
preserve
">THEOREMA II. PROPOS. II.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11197
"
xml:space
="
preserve
">OMnis circulus æqualis eſt triangulo rectangulo, cu-
<
lb
/>
ius radius eſt par vni eorum, quæ ſunt circa rectum
<
lb
/>
angulum, circumferentia verò baſi.</
s
>
<
s
xml:id
="
echoid-s11198
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11199
"
xml:space
="
preserve
">Hæc oſtenditur ab Archimede lib. </
s
>
<
s
xml:id
="
echoid-s11200
"
xml:space
="
preserve
">de Dimenſione Circuli, Pro-
<
lb
/>
poſ. </
s
>
<
s
xml:id
="
echoid-s11201
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s11202
"
xml:space
="
preserve
">propterea ibirecolatur.</
s
>
<
s
xml:id
="
echoid-s11203
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1028
"
type
="
section
"
level
="
1
"
n
="
619
">
<
head
xml:id
="
echoid-head649
"
xml:space
="
preserve
">THEOREMA III. PROPOS. III.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11204
"
xml:space
="
preserve
">OMnis ſector circuli æqualis eſt triangulo rectangu-
<
lb
/>
lo, cuius circuli radius eſt par vni eorum, quæ ſunt
<
lb
/>
circa rectum, circumferentia verò baſi illius ſectoris.</
s
>
<
s
xml:id
="
echoid-s11205
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11206
"
xml:space
="
preserve
">Si circulus, ABCD, cuius radius, ED, & </
s
>
<
s
xml:id
="
echoid-s11207
"
xml:space
="
preserve
">ſector, EDC, expo
<
lb
/>
ſito vero triangulo, HOM, cuius angulus, HMO, ſit rectus, & </
s
>
<
s
xml:id
="
echoid-s11208
"
xml:space
="
preserve
">
<
lb
/>
letus, HM, æquale ipſi, ED, &</
s
>
<
s
xml:id
="
echoid-s11209
"
xml:space
="
preserve
">, MO, circumferentiæ, ABCD,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0449-01
"
xlink:href
="
note-0449-01a
"
xml:space
="
preserve
">33. Sexti
<
lb
/>
Blem.
<
lb
/>
Exantec.</
note
>
ſit, MN, æqualis circumferentiæ, CD; </
s
>
<
s
xml:id
="
echoid-s11210
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s11211
"
xml:space
="
preserve
">iungatur, HN. </
s
>
<
s
xml:id
="
echoid-s11212
"
xml:space
="
preserve
">Dico
<
lb
/>
ergo ſectorem, ECD, æquari triangulo, HNM,. </
s
>
<
s
xml:id
="
echoid-s11213
"
xml:space
="
preserve
">Nam circulus,
<
lb
/>
ABCD, ad ſectorem, CED, eſt vt circumferentia, ABCD, ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>