Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
451
(429)
452
(432)
453
(433)
454
(434)
455
(435)
456
(436)
457
(437)
458
(438)
459
(439)
460
(440)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(429)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1032
"
type
="
section
"
level
="
1
"
n
="
621
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s11225
"
xml:space
="
preserve
">
<
pb
o
="
429
"
file
="
0451
"
n
="
451
"
rhead
="
LIBER VI.
"/>
ſunt circulorum, à quibus abſcinduntur partes proportionales, ipſi au-
<
lb
/>
tem circuli ſunt, vt diametrorum quadrata.</
s
>
<
s
xml:id
="
echoid-s11226
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1033
"
type
="
section
"
level
="
1
"
n
="
622
">
<
head
xml:id
="
echoid-head652
"
xml:space
="
preserve
">THEOREMA IV. PROPOS. IV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11227
"
xml:space
="
preserve
">DAti circuli, necnon ſimiles fectores inter ſe ſunt, vt
<
lb
/>
omnes eorundem circumferentiæ.</
s
>
<
s
xml:id
="
echoid-s11228
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11229
"
xml:space
="
preserve
">Sint in eadem antecedentis figura circuli quinque, BADC,
<
lb
/>
FXZ, deſcripti ſuper eodem centro, E, & </
s
>
<
s
xml:id
="
echoid-s11230
"
xml:space
="
preserve
">abijſdem intelligantur
<
lb
/>
<
figure
xlink:label
="
fig-0451-01
"
xlink:href
="
fig-0451-01a
"
number
="
310
">
<
image
file
="
0451-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0451-01
"/>
</
figure
>
abſciſſi ſimiles ſectores, D
<
lb
/>
ED, XEZ. </
s
>
<
s
xml:id
="
echoid-s11231
"
xml:space
="
preserve
">Dico circulos,
<
lb
/>
DABC, FZX, necnon ſe-
<
lb
/>
ctores, DEC, XEZ, inter ſe
<
lb
/>
eſſe, vt omnes iplorum cir-
<
lb
/>
cumferentiæ. </
s
>
<
s
xml:id
="
echoid-s11232
"
xml:space
="
preserve
">Sit denuò
<
lb
/>
expoſitũ triãgulum, HOM,
<
lb
/>
cuius ſit angulus rectus, H
<
lb
/>
MO, latus, HM, æquale ra-
<
lb
/>
dio, ED, &</
s
>
<
s
xml:id
="
echoid-s11233
"
xml:space
="
preserve
">, MO, circum-
<
lb
/>
ferentiæ, DCBA, abſciſſa
<
lb
/>
autem, HR, æqualr ipſi,
<
lb
/>
EX, & </
s
>
<
s
xml:id
="
echoid-s11234
"
xml:space
="
preserve
">per, R, ducta paral-
<
lb
/>
lela ipſi, OM, quæ ſit, SR, intercepta lateribus, HO, HM, patet,
<
lb
/>
vt dicebatur in Corol. </
s
>
<
s
xml:id
="
echoid-s11235
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s11236
"
xml:space
="
preserve
">ant. </
s
>
<
s
xml:id
="
echoid-s11237
"
xml:space
="
preserve
">Propoſ. </
s
>
<
s
xml:id
="
echoid-s11238
"
xml:space
="
preserve
">quod circumferentia, FZX,
<
lb
/>
æquatur ipſi, SR, eodem modo abſcindentes ab ipſis, HM, ED,
<
lb
/>
verſus, H, E, puncta æquales quaſcunque rectas lineas, & </
s
>
<
s
xml:id
="
echoid-s11239
"
xml:space
="
preserve
">per ea-
<
lb
/>
rum terminos ducentes parallelam quidem ipſi, OM, in triangulo,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s11240
"
xml:space
="
preserve
">circumfer entiam iuper cenrro, E, in circulo, ABCD, manife-
<
lb
/>
ſtum erit prædictam circumferentiam æquari prædictæ parallelæ,
<
lb
/>
lateribus, HO, HM, interceptæ, & </
s
>
<
s
xml:id
="
echoid-s11241
"
xml:space
="
preserve
">vnicuique circumferentiæ in
<
lb
/>
circulo, ABCD, fic deſcriptæ reſpondere ſuam parallelam in triã-
<
lb
/>
gulo, HOM, cum ſint rectę, HM, ED, æquales, igitur conclude-
<
lb
/>
mus omnes circumferentias circuli, DABC, æquari omnibus li-
<
lb
/>
neis trianguli, HOM, regula, OM, ſicut etiam omnes circumfe-
<
lb
/>
rentias circuli, FZX, æquari omnibus lineis trianguli, HSR, regu-
<
lb
/>
la eadem, OM, quapropter, vt omnes lineæ trianguli, HOM, ad
<
lb
/>
omnes lineas trianguli, HSR, ideſi vt triãgulum, HOM, ad, HSR,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0451-01
"
xlink:href
="
note-0451-01a
"
xml:space
="
preserve
">3. l. 2.</
note
>
ideſt vt circulus, DABC, ad circulum, FZX, ita omnes circumfe-
<
lb
/>
rentiæ circuli, ABCD, erunt ad omnes circumfarentias circuli
<
lb
/>
ciuidem, FZX; </
s
>
<
s
xml:id
="
echoid-s11242
"
xml:space
="
preserve
">quod & </
s
>
<
s
xml:id
="
echoid-s11243
"
xml:space
="
preserve
">fimuli methodo de ſectoribus ex. </
s
>
<
s
xml:id
="
echoid-s11244
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s11245
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>