Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
451
452
453
454
455
456
457
458
459
460
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/452.jpg
"
pagenum
="
424
"/>
<
arrow.to.target
n
="
note453
"/>
menti annui prædicti ſupra diſtantiam Apogæi Lunæ a Perigæo
<
lb
/>
Solis in conſequentia; vel quod perinde eſt, capiatur angulus
<
lb
/>
<
emph
type
="
italics
"/>
CDF
<
emph.end
type
="
italics
"/>
æqualis complemento Anomaliæ veræ Solis ad gradus 360.
<
lb
/>
Et ſit
<
emph
type
="
italics
"/>
DF
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
DC
<
emph.end
type
="
italics
"/>
ut dupla Eccentricitas Orbis magni ad diſtan
<
lb
/>
tiam mediocrem Solis a Terra, & motus medius diurnus Solis ab
<
lb
/>
Apogæo Lunæ ad motum medium diurnum Solis ab Apogæo
<
lb
/>
proprio conjunctim, id eſt, ut 33 7/8 ad 1000 & 52′. </
s
>
<
s
>27″. </
s
>
<
s
>16′ ad
<
lb
/>
59′. </
s
>
<
s
>8″. </
s
>
<
s
>10′ conjunctim, ſive ut 3 ad 100. Et concipe centrum
<
lb
/>
Orbis Lunæ locari in puncto
<
emph
type
="
italics
"/>
F,
<
emph.end
type
="
italics
"/>
& in Epicyclo cujus centrum eſt
<
lb
/>
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
& radius
<
emph
type
="
italics
"/>
DF
<
emph.end
type
="
italics
"/>
interea revolvi dum punctum
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
progreditur
<
lb
/>
in circumferentia circuli
<
emph
type
="
italics
"/>
DABD.
<
emph.end
type
="
italics
"/>
Hac enim ratione velocitas
<
lb
/>
qua centrum Orbis Lunæ in linea quadam curva circum centrum
<
lb
/>
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
deſcripta movebitur, erit reciproce ut cubus diſtantiæ Solis a
<
lb
/>
Terra quamproxime, ut oportet. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note453
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Computatio motus hujus difficilis eſt, ſed facilior reddetur per
<
lb
/>
approximationem ſequentem. </
s
>
<
s
>Si diſtantia mediocris Lunæ a Terra
<
lb
/>
ſit partium 100000, & Eccentricitas
<
emph
type
="
italics
"/>
TC
<
emph.end
type
="
italics
"/>
ſit partium 5505 ut ſu
<
lb
/>
pra: recta
<
emph
type
="
italics
"/>
CB
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
CD
<
emph.end
type
="
italics
"/>
invenietur partium 1172 1/4, & recta
<
emph
type
="
italics
"/>
DF
<
emph.end
type
="
italics
"/>
<
lb
/>
<
figure
id
="
id.039.01.452.1.jpg
"
xlink:href
="
039/01/452/1.jpg
"
number
="
221
"/>
<
lb
/>
partium 35 1/3. Et hæc recta ad diſtantiam
<
emph
type
="
italics
"/>
TC
<
emph.end
type
="
italics
"/>
ſubtendit angulum
<
lb
/>
ad Terram quem tranſlatio centri Orbis a loco
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
ad locum
<
emph
type
="
italics
"/>
F
<
emph.end
type
="
italics
"/>
ge
<
lb
/>
nerat in motu centri hujus: & eadem recta duplicata in ſitu paral
<
lb
/>
lelo ad diſtantiam ſuperioris umbilici Orbis Lunæ a Terra, ſubten
<
lb
/>
dit eundem angulum, quem utique tranſlatio illa generat in motu
<
lb
/>
umbilici, & ad diſtantiam Lunæ a Terra ſubtendit angulum quem
<
lb
/>
eadem tranſlatio generat in motu Lunæ, quique propterea Æqua
<
lb
/>
tio centri Secunda dici poteſt. </
s
>
<
s
>Et hæc Æquatio in mediocri Lunæ
<
lb
/>
diſtantia a Terra, eſt ut ſinus anguli quem recta illa
<
emph
type
="
italics
"/>
DF
<
emph.end
type
="
italics
"/>
cum recta
<
lb
/>
a puncto
<
emph
type
="
italics
"/>
F
<
emph.end
type
="
italics
"/>
ad Lunam ducta continet quamproxime, & ubi ma
<
lb
/>
xima eſt evadit 2′. </
s
>
<
s
>25″. </
s
>
<
s
>Angulus autem quem recta
<
emph
type
="
italics
"/>
DF
<
emph.end
type
="
italics
"/>
& recta
<
lb
/>
a puncto
<
emph
type
="
italics
"/>
F
<
emph.end
type
="
italics
"/>
ad Lunam ducta comprehendunt, invenitur vel ſub
<
lb
/>
ducendo angulum
<
emph
type
="
italics
"/>
EDF
<
emph.end
type
="
italics
"/>
ab Anomalia media Lunæ, vel addendo
<
lb
/>
diſtantiam Lunæ a Sole ad diſtantiam Apogæi Lunæ ab Apogæo </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>