Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
451
(429)
452
(432)
453
(433)
454
(434)
455
(435)
456
(436)
457
(437)
458
(438)
459
(439)
460
(440)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(432)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1033
"
type
="
section
"
level
="
1
"
n
="
622
">
<
p
>
<
s
xml:id
="
echoid-s11245
"
xml:space
="
preserve
">
<
pb
o
="
432
"
file
="
0452
"
n
="
452
"
rhead
="
GEOMETRIÆ
"/>
XEZ, ducta, HN, quæ abſcindat, NM, æqualem circumferentię,
<
lb
/>
CD, facilè oſtendemus, hæc autem erant demonſtranda.</
s
>
<
s
xml:id
="
echoid-s11246
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1035
"
type
="
section
"
level
="
1
"
n
="
623
">
<
head
xml:id
="
echoid-head653
"
xml:space
="
preserve
">THEOREMA V. PROPOS. V.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11247
"
xml:space
="
preserve
">QVicumque ſectores inter ſe comparati, ſeu quæcum-
<
lb
/>
que figuræ ex ſectoribus compoſitæ ad ſectores, vel
<
lb
/>
ad figuras ex ſectoribus compoſitas comparatæ, habent
<
lb
/>
eandem rationem, quam omnes ipſarum circumferentiæ
<
lb
/>
ad omnes illarum circumferentias.</
s
>
<
s
xml:id
="
echoid-s11248
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11249
"
xml:space
="
preserve
">Sint quicunque circuli ſuper centro, A, nempè, ECD, maior, &</
s
>
<
s
xml:id
="
echoid-s11250
"
xml:space
="
preserve
">,
<
lb
/>
VIO, minor, & </
s
>
<
s
xml:id
="
echoid-s11251
"
xml:space
="
preserve
">in, ECD, fit ſector quicunque, CAD, & </
s
>
<
s
xml:id
="
echoid-s11252
"
xml:space
="
preserve
">ſimiliter
<
lb
/>
in, VIO, quilibet ſector, OAB. </
s
>
<
s
xml:id
="
echoid-s11253
"
xml:space
="
preserve
">Dico ſectorem, CAD, ad ſectorẽ,
<
lb
/>
OAB, eſſe vt omnes circumferentias, CAD, ad omnes circumfe-
<
lb
/>
rentias, OAB. </
s
>
<
s
xml:id
="
echoid-s11254
"
xml:space
="
preserve
">Secent radij, CA, AD, circumferentiam, VIO, in
<
lb
/>
<
figure
xlink:label
="
fig-0452-01
"
xlink:href
="
fig-0452-01a
"
number
="
311
">
<
image
file
="
0452-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0452-01
"/>
</
figure
>
punctis, I, O; </
s
>
<
s
xml:id
="
echoid-s11255
"
xml:space
="
preserve
">Eſt ergo ſector, CAD, ſi-
<
lb
/>
milis ſectori, IAO, & </
s
>
<
s
xml:id
="
echoid-s11256
"
xml:space
="
preserve
">ideo eſt ad illum,
<
lb
/>
vt omnes circumferentiæ ad omnes
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0452-01
"
xlink:href
="
note-0452-01a
"
xml:space
="
preserve
">Exantec.</
note
>
circumferentias, ſed & </
s
>
<
s
xml:id
="
echoid-s11257
"
xml:space
="
preserve
">vt ſector, IAO,
<
lb
/>
ad ſectorem, OAB, ita omnes cir-
<
lb
/>
cumferentiæ ad omnes circumferen-
<
lb
/>
tias, nam ſector, IAO, ad, OAB,
<
lb
/>
eſt vt circumferentia, IO, ad, OB,
<
lb
/>
vt verò, IO, ab, OB, ſic, deſcripta cir-
<
lb
/>
cumferentia, STR, vtcumque, ipſa, ST,
<
lb
/>
ad, TR, eſt enim, IO, ad, ST, vt OA, ad,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0452-02
"
xlink:href
="
note-0452-02a
"
xml:space
="
preserve
">Coroll. 2.
<
lb
/>
3 huius.</
note
>
AT, ideſt vt, OB, ad, TR, vnde, permu-
<
lb
/>
tando, vt, IO, 3d, OB, ſic, ST, ad, SR, & </
s
>
<
s
xml:id
="
echoid-s11258
"
xml:space
="
preserve
">vt vnum ad vnum, ita
<
lb
/>
omnia ad omnia, ideſt vt, IO, ad, OB, ita omnes circumferentiæ,
<
lb
/>
IAO, ſectoris ad omnes circumferentias ſectoris, OAB, ſed vt, IO,
<
lb
/>
ad, OB, ſic, vt dectũ eſt, ſe habet ſector, IAO, ad, OAB, ergo, IAO,
<
lb
/>
ad, OAB, eſt vt omnes circum ferentiæ, IAO, ad omnes circumfe-
<
lb
/>
rentias, OAB, ſed & </
s
>
<
s
xml:id
="
echoid-s11259
"
xml:space
="
preserve
">ſectorem, CAD, ad, IAO, eſſe oſtenſum eſt,
<
lb
/>
vt omnes circumferentiæ, CAD, ad omnes circumferentias, IAO,
<
lb
/>
ergo ex æquali ſector, CAD, ad ſectorem OAB, eſt vt omnes cir-
<
lb
/>
cumferentiæ, CAD, ad omnes circumferentias, OAB. </
s
>
<
s
xml:id
="
echoid-s11260
"
xml:space
="
preserve
">Et com-
<
lb
/>
ponendo figura compoſita ex ſectoribus, CAD, OAB, ad ſectorẽ,
<
lb
/>
OAB, erit vt omnes circumferentiæ figuę eiuſdem, ad omnes cir-
<
lb
/>
cumferentias ſectoris, OAB, veiuti etiam ſi prædicta figura </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>