Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
451
(429)
452
(432)
453
(433)
454
(434)
455
(435)
456
(436)
457
(437)
458
(438)
459
(439)
460
(440)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(435)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1038
"
type
="
section
"
level
="
1
"
n
="
625
">
<
p
>
<
s
xml:id
="
echoid-s11300
"
xml:space
="
preserve
">
<
pb
o
="
435
"
file
="
0455
"
n
="
455
"
rhead
="
LIBER VI.
"/>
FN, ergo omnes circumferentiæ figuræ circumſcriptæ minores
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0455-01
"
xlink:href
="
note-0455-01a
"
xml:space
="
preserve
">Exantec.</
note
>
erunt omnibus circumferentijs ſectoris, QAR, cum verò figura ex
<
lb
/>
ſectoribus compoſita ad ſectorem, ſit vt omnes circumferentiæ ad
<
lb
/>
omnes circumferentias, ideò etiam figura circumſcripta minor erit
<
lb
/>
ſectore, QAR, & </
s
>
<
s
xml:id
="
echoid-s11301
"
xml:space
="
preserve
">multò minor eri
<
unsure
/>
t fig ira, AFN, ſectore, QAR, ſed
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s11302
"
xml:space
="
preserve
">æqualis illi oſtenſa fuit, quod eſt abſurdum, igitur abſurdum etiã
<
lb
/>
eſt dicere omnes circumferentias ſectoris, QAR, maiores eſſe om-
<
lb
/>
nibus circumferentijs ſpatij, AFN. </
s
>
<
s
xml:id
="
echoid-s11303
"
xml:space
="
preserve
">Dico nunc neque eſſe mino-
<
lb
/>
res, ſi hoc verum eſt, ſint minores omnibus circumferentijs ſecto-
<
lb
/>
ris, SAT, & </
s
>
<
s
xml:id
="
echoid-s11304
"
xml:space
="
preserve
">repetita eadem conſtructione, ſit ſpatio, AFN, circũ-
<
lb
/>
ſcripta figura ex ſectoribus compoſita, & </
s
>
<
s
xml:id
="
echoid-s11305
"
xml:space
="
preserve
">alia inſcripta, ita vt cir-
<
lb
/>
cumſcriptæ figurę omnes circumferentiæ ſuperent omnes circum-
<
lb
/>
ferentias inſcriptæ minori quantitate, quam ſint omnes circum-
<
lb
/>
ferentiæ ſectoris, SAT, ergo omnes circumferentiæ figuræ, AFN,
<
lb
/>
ſuperabunt omnes circumferentias figuræ inſcriptæ multò minori
<
lb
/>
quantitate, quam eædem ſuperent omnes circumferentias, QAR,
<
lb
/>
ergo omnes circumferentię inſcriptæ figuræ maiores erunt omni-
<
lb
/>
bus circumferentijs ſectoris, QAR, ergo figura inſcripta maior e-
<
lb
/>
tiam erit ſectore, QAR, & </
s
>
<
s
xml:id
="
echoid-s11306
"
xml:space
="
preserve
">eodem multò maior erit figura, AFN,
<
lb
/>
contra hypoteſim, eſt enim illi æ qualis, quod eſt obſurdum, igitur
<
lb
/>
abſurdum etiam eſt omnes circumferentias ſectoris, QAR, mino-
<
lb
/>
res eſſe omnibus circumferentijs figuræ, AFN, ſed neq; </
s
>
<
s
xml:id
="
echoid-s11307
"
xml:space
="
preserve
">ſunt illis
<
lb
/>
maiores, vt oſtenſum eſt, ergo ſunt eiſdem æquales, ſed omnes cir-
<
lb
/>
cumferentiæ ſectoris, AQR, ad circulum, OQSN, vel quemcunq;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s11308
"
xml:space
="
preserve
">ſectorem comparatæ ſunt, vt ſpatium ad ſpatium, ergo ſpatium
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0455-02
"
xlink:href
="
note-0455-02a
"
xml:space
="
preserve
">Exantec,</
note
>
quoque, AFN, ad circulum, OQSN, vel ad quemcunque ſectorem,
<
lb
/>
erit, vt omnes illius circumfer. </
s
>
<
s
xml:id
="
echoid-s11309
"
xml:space
="
preserve
">ad omnes iſtius circumferentias,
<
lb
/>
quod, &</
s
>
<
s
xml:id
="
echoid-s11310
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s11311
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1040
"
type
="
section
"
level
="
1
"
n
="
626
">
<
head
xml:id
="
echoid-head656
"
xml:space
="
preserve
">THEOREMA VII. PROPOS. VII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11312
"
xml:space
="
preserve
">SI in ſpiralem ex prima reuolutione ortam incidant duę
<
lb
/>
lineæ à puncto, quod eſt initium ſpiralis, & </
s
>
<
s
xml:id
="
echoid-s11313
"
xml:space
="
preserve
">producã-
<
lb
/>
tur vſq; </
s
>
<
s
xml:id
="
echoid-s11314
"
xml:space
="
preserve
">ad circumferentiam primi circuli, eandem rationẽ
<
lb
/>
inter ſe habebunt iſtæ in ſpiralem incidentes, quam arcus
<
lb
/>
circuli, medij inter terminum ſpiralis, & </
s
>
<
s
xml:id
="
echoid-s11315
"
xml:space
="
preserve
">limites linearum
<
lb
/>
productarum in citcumferentia factos, ſumptis in conſe-
<
lb
/>
quentia arcubus à fine ſpiralis.</
s
>
<
s
xml:id
="
echoid-s11316
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>