Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
451
452
453
454
455
456
457
458
459
460
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/456.jpg
"
pagenum
="
428
"/>
<
arrow.to.target
n
="
note457
"/>
ram a novilunio vel plenilunio plus minus duodecimam, adeoque
<
lb
/>
incidunt in horam a novilunio vel plenilunio plus minus quadra
<
lb
/>
geſimam tertiam. </
s
>
<
s
>Incidunt vero in hoc portu in horam ſepti
<
lb
/>
mam circiter ab appulſu Lunæ ad meridianum loci; ideoque pro
<
lb
/>
xime ſequuntur appulſum Lunæ ad meridianum, ubi Luna diſtat a
<
lb
/>
Sole vel ab oppoſitione Solis gradibus plus minus octodecim vel
<
lb
/>
novendecim in conſequentia. </
s
>
<
s
>Æſtas & Hyems maxime vigent,
<
lb
/>
non in ipſis Solſtitiis, ſed ubi Sol diſtat a Solſtitiis decima circi
<
lb
/>
ter parte totius circuitus, ſeu gradibus plus minus 36 vel 37. Et
<
lb
/>
ſimiliter maximus Æſtus maris oritur ab appulſu Lunæ ad meri
<
lb
/>
dianum loci, ubi Luna diſtat a Sole decima circiter parte motus
<
lb
/>
totius ab Æſtu ad Æſtum. </
s
>
<
s
>Sit diſtantia illa graduum plus mi
<
lb
/>
nus 18 1/2. Et vis Solis in hac diſtantia Lunæ a Syzygiis & Qua
<
lb
/>
draturis, minor erit ad augendum & ad minuendum motum ma
<
lb
/>
ris a vi Lunæ oriundum, quam in ipſis Syzygiis & Quadraturis, in
<
lb
/>
ratione radii ad ſinum complementi diſtantiæ hujus duplicatæ ſeu
<
lb
/>
anguli graduum 37, hoc eſt, in ratione 10000000 ad 7986355.
<
lb
/>
IdeoQ.E.I. analogia ſuperiore pro S ſcribi debet 0, 7986355 S. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note457
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Sed & vis Lunæ in Quadraturis, ob declinationem Lunæ ab
<
lb
/>
Æquatore, diminui debet. </
s
>
<
s
>Nam Luna in Quadraturis, vel potius
<
lb
/>
in gradu 18 1/2 poſt Quadraturas, in declinatione graduum plus
<
lb
/>
minus 22. 13′ verſatur. </
s
>
<
s
>Et Luminaris ab Æquatore declinantis
<
lb
/>
vis ad Mare movendum diminuitur in duplicata ratione ſinus
<
lb
/>
complementi declinationis quamproxime. </
s
>
<
s
>Et propterea vis
<
lb
/>
Lunæ in his Quadraturis eſt tantum 0,8570327 L. </
s
>
<
s
>Eſt igitur
<
lb
/>
L+0,7986355 S ad 0,8570327 L-0,7986355 S ut 9 ad 5. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Præterea diametri Orbis in quo Luna abſque Eccentricitate mo
<
lb
/>
veri deberet, ſunt ad invicem ut 69 ad 70; ideoQ.E.D.ſtantia
<
lb
/>
Lunæ a Terra in Syzygiis eſt ad diſtantiam ejus in Quadraturis,
<
lb
/>
ut 69 ad 70, cæteris paribus. </
s
>
<
s
>Et diſtantiæ ejus in gradu 18 1/2 a
<
lb
/>
Syzygiis ubi Æſtus maximus generatur, & in gradu 18 1/2 a Qua
<
lb
/>
draturis ubi Æſtus minimus generatur, ſunt ad mediocrem ejus
<
lb
/>
diſtantiam, ut 69,098747 & 69,897345 ad 69 1/2. Vires autem Lu
<
lb
/>
næ ad Mare movendum ſunt in triplicata ratione diſtantiarum in
<
lb
/>
verſe, ideoque vires in maxima & minima harum diſtantiarum ſunt
<
lb
/>
ad vim in mediocri diſtantia, ut 0,9830427 & 1,017522 ad 1. Unde fit
<
lb
/>
1,017522 L+0,7986355 S ad 0,9830427X0,8570327 L-0,7986355 S
<
lb
/>
ut 9 ad 5. Et S ad L ut 1 ad 4,4815. Itaque cum vis Solis fit
<
lb
/>
ad vim gravitatis ut 1 ad 12868200, vis Lunæ erit ad vim gravi
<
lb
/>
tatis ut 1 ad 2871400. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>